• 제목/요약/키워드: nonlinear amplification

검색결과 119건 처리시간 0.033초

Gold-sapphire Plasmonic Nanostructures for Coherent Extreme-ultraviolet Pulse Generation

  • Han, Seunghwoi
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.576-582
    • /
    • 2022
  • Plasmonic high-order harmonic generation (HHG) is used in nanoscale optical applications because it can help in realizing a compact coherent ultrashort pulse generator on the nanoscale, using plasmonic field enhancement. The plasmonic amplification of nanostructures induces nonlinear optical phenomena such as second-order harmonic generation, third-order harmonic generation, frequency mixing, and HHG. This amplification also causes damage to the structure itself. In this study, the plasmonic amplification according to the design of a metal-coated sapphire conical structure is theoretically calculated, and we analyze the effects of this optical amplification on HHG and damage to the sample.

철근콘크리트 보통전단벽의 전단력 증폭효과 근사해석 (Approximate Analysis for Shear Force Amplification Effect in Ordinary RC Shear Walls)

  • 전성하;박지훈
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.129-139
    • /
    • 2020
  • An approximate analysis method is proposed to predict the dynamic amplification of shear forces in ordinary reinforced concrete shear walls as a preliminary study. First, a seismic design for three groups of ordinary reinforced concrete shear walls higher than 60 m was created on the basis of nonlinear dynamic analysis. Causes for the dynamic amplification effect of shear forces were investigated through a detailed evaluation of the nonlinear dynamic analysis result. A new modal combination rule was proposed on the basis of that observation, in which fundamental mode response and combined higher mode response were summed directly. The fundamental mode response was approximated by nonlinear static analysis result, while higher mode response was computed using response spectrum analysis for equivalent linear structural models with the effective stiffness based on the nonlinear dynamic analysis result. The proposed approximate analysis generally predicted vertical distribution of story shear and shear forces of individual walls from the nonlinear dynamic analysis with comparable accuracy.

Adaptive Post Processing of Nonlinear Amplified Sound Signal

  • Lee, Jae-Kyu;Choi, Jong-Suk;Seok, Cheong-Gyu;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.872-876
    • /
    • 2005
  • We propose a real-time post processing of nonlinear amplified signal to improve voice recognition in remote talk. In the previous research, we have found the nonlinear amplification has unique advantage for both the voice activity detection and the sound localization in remote talk. However, the original signal becomes distorted due to its nonlinear amplification and, as a result, the rest of sequence such as speech recognition show less satisfactorily results. To remedy this problem, we implement a linearization algorithm to recover the voice signal's linear characteristics after the localization has been done.

  • PDF

희석된 수소/공기 확산화염의 비정상 음향파 응답특성 해석 (Unsteady Analysis of Acoustic-Pressure Responses of $N_{2}$ Diluted $H_{2}$ and Air Diffusion Flames)

  • 손채훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.320-325
    • /
    • 2003
  • Acoustic-Pressure Response of diluted hydrogen-air diffusion flames is investigated numerically by adopting a fully unsteady analysis of flame structures. In the low-pressure regime, the amplification index remains low and constant at low frequencies. As acoustic frequency increases, finite-rate chemistry is enhanced through a nonlinear accumulation of heat release rate, leading to a high amplification index. Finally, the flame responses decrease at high frequency due to the response lag of the transport zone. For a medium-pressure operation and low-frequency excitation, the amplification index is low and constant. It then decreases at moderate frequencies. As frequency increases further, the amplification index increases appreciably due to an intense accumulation effect.

  • PDF

Nonlinearity effect on the dynamic behavior of the clayey basin edge

  • Hadi Khanbabazadeh
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.367-380
    • /
    • 2024
  • Investigations has shown that the correct estimation of the effective amplification period is as important as the amplification value itself. It gets more important in 2D basins. This study presents a quantitative coefficient for consideration of the nonlinearity effect in terms of amplification value and the shift in its period which is missing or ineffectively considered in the previous studies. To attain this goal, by the application of a time domain fully nonlinear method, the deviation of the more common equivalent linear results from the basin nonlinear behavior under strong ground motions is investigated quantitatively. Also, despite the increase in the damping ratio, the possibility of the increase in the amplification due to the increase in motion strength is shown. To make the results useful in engineering practice, by introducing nonlinearity ratio, the effect of the nonlinearity is quantitatively estimated for two soft and stiff clayey basins with three different depths under a set of motions scaled to two target spectrum. Results show that at the 100 m depth soft clayey basin, while the nonlinearity ratio shows a 35% deviation at the basin edge part under DD1 motion level, its effect moves to the central part with 20% effect under DD3 motion level. By the increase in depth to 150 m, the results show a decrease in the overall effect of the nonlinear behavior for both clay types. At this depth, the nonlinearity ratio gives a 30% and 17% difference on a limited distance from outcrop at the soft clayey basin under DD1 and DD3 motion levels, respectively. At the 30 m depth basins, the nonlinearity ratio shows up to 25% difference for different cases. The presented ratio would be introduced as nonlinearity coefficients for consideration of the nonlinearity effects in the codes. The presented quantitative margins will help the designer to have a better understanding of the amplification period change because of nonlinearity over 2D basin surface.

비선형 간섭계 파라메트릭 광증폭기 (Nonlinear interferometric optical parametric amplifier)

  • 이상용;김재관;정제명;장호성
    • 한국광학회지
    • /
    • 제14권2호
    • /
    • pp.175-183
    • /
    • 2003
  • Kerr 매질로 구성된 비선형 간섭계의 파라메트릭 증폭을 자기위상변조(self-phase modulation)를 이용하여 구하고, 사광자혼합(four-wave mixing)의로 구한 것과 등가임을 보여 파라메트릭 이득 발생에 적합함을 보였다. 또한 빛의 전파 거리에 대한 파워 이득의 변화율을 구하여 비선형 팔의 길이에 따라 이득이 포화됨을 보이고, 파라메트릭 증폭의 대역폭 특성을 비축퇴사광자혼합(nondegenerated four-wave mixing)을 통해 분석하였다. 수치해석을 통해 자기위상변조로 구한 파라메트릭 증폭의 여러 특성을 분석하여, 전광증폭기(all-optical amplifier)와 같은 전광소자의 분석 및 설계에 적용될 수 있음을 보였다.

Nonlinear Microwave Performance of an Optoelectronic CPW-to-Slotline Ring Resonator on GaAs Substrate

  • Lee, Jong-Chul
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권3호
    • /
    • pp.95-98
    • /
    • 1997
  • A nonlinear optical-microwave interaction is carried out in an uniplanar CPW-to-Slotline ring resonator on the semi-insulating GaAs substrate, in which a Schottky photodetector is monolithically integrated as a coupling gap. When the capacitive reactance of the detetor is modulated, the parametric amplification effect of the mixer occurs. In this device structure, the parametric amplification gain of 20 dB without the applied bias in RF signal is obtained. This microwave optoelectronic mixer can be used in the fiber-optic communication link.

  • PDF

Evaluating the reliability of using the deflection amplification factor to estimate design displacements with accidental torsion effects

  • Lin, Jui-Liang;Wang, Wei-Chun;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • 제8권2호
    • /
    • pp.443-462
    • /
    • 2015
  • Some model building codes stipulate that the design displacement of a building can be computed using the elastic static analysis results multiplied by the deflection amplification factor, $C_d$. This approach for estimating the design displacement is essential and appealing in structural engineering practice when nonlinear response history analysis (NRHA) is not required. Furthermore, building codes stipulate the consideration of accidental torsion effects using accidental eccentricity, whether the buildings are symmetric-plan, or asymmetric-plan. In some model building codes, the accidental eccentricity is further amplified by the torsional amplification factor $A_x$ in order to minimize the discrepancy between statically and dynamically estimated responses. Therefore, this warrants exploration of the reliability of statically estimated design displacements in accordance with the building code requirements. This study uses the discrepancy curves as a way of assessing the reliability of the design displacement estimates resulting from the factors $C_d$ and $A_x$. The discrepancy curves show the exceedance probabilities of the differences between the statically estimated design displacements and NRHA results. The discrepancy curves of 3-story, 9-story, and 20-story example buildings are investigated in this study. The example buildings are steel special moment frames with frequency ratios equal to 0.7, 1.0, 1.3, and 1.6, as well as existing eccentricity ratios ranging from 0% to 30%.

라만 후방향산란을 이용한 레이저 펄스 증폭 가시화 (Visualization of Laser Pulse Amplification by Raman Backscattering)

  • 이해준;김진철;김창범;김광훈;김종욱;석희용
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.73-76
    • /
    • 2002
  • A one-dimensional fluid model has been established for Raman amplification of a short laser pulse in a plasma by a counter-propagating pump. The laser pulse is amplified with a large gain and also may be compressed by nonlinear three-wave Interactions. The spatiotemporal evolutions of the seed and the pump pulses were visualized for linear and nonlinear regimes, and the transition from regular to chaotic behavior of subsidiary pulses was investigated with variation of pump intensity.

  • PDF

Single Logarithmic Amplification and Deep Learning-based Fixed-threshold On-off Keying Detection for Free-space Optical Communication

  • Qian-Wen Jing;Yan-Qing Hong
    • Current Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.239-245
    • /
    • 2024
  • This paper proposes single logarithmic amplification (single-LA) and deep learning (DL)-based fixed-threshold on-off keying (OOK) detection for free-space optical (FSO) communication. Multilevel LAs (MLAs) can be used to mitigate intensity fluctuations in the received OOK signal by their nonlinear gain characteristics; however, it is ineffective in the case of high scintillation, owing to degradation of the OOK signal's extinction ratio. Therefore, a DL technique is applied to realize effective scintillation compensation in single-LA applications. Fully connected (FC) networks and fully connected neural networks (FCNN), which have nonlinear modeling characteristics, are deployed in this work. The performance of the proposed method is evaluated through simulations under various scintillation effects. Simulation results show that the proposed method outperforms the conventional adaptive-threshold-decision, single-LA-based, MLA-based, FC-based, and FCNN-based OOK detection techniques.