• Title/Summary/Keyword: nonlinear adaptive PID controller

Search Result 45, Processing Time 0.023 seconds

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

Tension Control Using Adaptive PID Controller in the Two-Drum Winder Web Transport System (Two-Drum Winder 권취 공정 시스템에서의 적용 PID 제어기를 이용한 장력제어)

  • Park, Seung-Gyu;Lee, Dong-Bin;Yim, Hwa-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.813-821
    • /
    • 2000
  • In this paper, we developed modeling of tension and speed dynamics for a two-drum winder in a three span continuous web transport system which had not been previously. Dynamic modeling of the time-varying nonlinear system was derived by considering the effect of the radii and mass moment of inertia in the unwinder and the two-drum winder through winding up the web. After linearizing it, we designed with a variable-gain a PID controller for tension control and a PI controller for speed. Simulation is carried out with the variation of radii and moment of inertia at high speed for the proposed tension control system with the two-drum winder and the variavle-gain a PID controller. Results show good performance of tension control during the speed change speed at a start-up and stop.

  • PDF

Design of a Self-tuning Controller with a PID Structure Using Neural Network (신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계)

  • Cho, Won-Chul;Jeong, In-Gab;Shim, Tae-Eun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.1-8
    • /
    • 2002
  • This paper presents a generalized minimum-variance self-tuning controller with a PID structure using neural network which adapts to the changing parameters of the nonlinear system with nonminimum phase behavior and time delays. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation is done to adapt the nonlinear nonminimum phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct adaptive controller using neural network.

A Design of Stable Adaptive Composite Control Systems (안정한 적응 이중 제어시스템의 설계)

  • Zhang, Jeong-Il;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.370-372
    • /
    • 1994
  • In this paper, a stable adaptive composite control system consisting of a PID and a fuzzy controllers is designed to control nonlinear systems. In the fuzzy controller, parameters of membership functions characterizing the linguistic terms change according to some adaptive law. Also, parameters of PID controller change according to some adaptive law. These adaptive laws are based on the Lyapunov synthesis approach. Then, it is proved that the closed-loop system using such an adaptive composite control system is globally stable in the sense that all signals involved are bounded and the tracking error converges to zero. We apply this adaptive composite control system to control a nonlinear system.

  • PDF

Levitation Control of BLSRM using Adaptive Fuzzy PID Controller (퍼지제어기 기반의 새로운 BLSRM의 축방향지지력 제어)

  • He, Yingjie;Zhang, Fengge;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.519-520
    • /
    • 2016
  • BLSRM is a nonlinear, strong coupling and multi-variable system. The conventional control method is vulnerable to uncertain factors such as the load disturbance and satellite parameters change. It is difficult to obtain satisfactory control effect. Basing on a 8/10 BLSRM, whose suspending force control is separated with the torque control, this paper presents adaptive fuzzy PID controller for levitation control, which apply the fuzzy logic control to the conventional PID controller for parameters self-tuning. Both fuzzy and parameters of PID controller are self-tuning on-line, which improve the performance of controller. Finally, simulation and experimental results show the performance of the proposed method.

  • PDF

Adaptive PID controller based on error self-recurrent neural networks (오차 자기순환 신경회로망에 기초한 적응 PID제어기)

  • Lee, Chang-Goo;Shin, Dong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF

Design of a smart MEMS accelerometer using nonlinear control principles

  • Hassani, Faezeh Arab;Payam, Amir Farrokh;Fathipour, Morteza
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • This paper presents a novel smart MEMS accelerometer which employs a hybrid control algorithm and an estimator. This scheme is realized by adding a sliding-mode controller to a conventional PID closed loop system to achieve higher stability and higher dynamic range and to prevent pull-in phenomena by preventing finger displacement from passing a maximum preset value as well as adding an adaptive nonlinear observer to a conventional PID closed loop system. This estimator is used for online estimation of the parameter variations for MEMS accelerometers and gives the capability of self testing to the system. The analysis of convergence and resolution show that while the proposed control scheme satisfies these criteria it also keeps resolution performance better than what is normally obtained in conventional PID controllers. The performance of the proposed hybrid controller investigated here is validated by computer simulation.

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

Automatic Landing in Adaptive Gain Scheduled PID Control Law

  • Ha, Cheol-Keun;Ahn, Sang-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2345-2348
    • /
    • 2003
  • This paper deals with a problem of automatic landing guidance and control system design. The auto-landing control system for the longitudinal motion is designed in the classical PID controller. The controller gains are properly adapted to variation of the performance using fuzzy logic as a gain scheduler for the PID gains. This control logic is applied to the problem of the automatic landing control system design. From the numerical simulation using the 6DOF nonlinear model of the associated airplane, it is shown that the auto-landing maneuver is successfully achieved from the start of the flight conditions: 1500 ft altitude, 250 ft/sec airspeed and zero flight path angle.

  • PDF

Longitudinal Automatic Landing in AdaptivePID Control Law Under Wind Shear Turbulence

  • Ha, Cheol-keun;Ahn, Sang-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2004
  • This paper deals with a problem of automatic landing guidance and control ofthe longitudinal airplane motion under the wind shear turbulence. Adaptive gainscheduled PID control law is proposed in this paper. Fuzzy logic is the main part ofthe adaptive PID controller as gain scheduler. To illustrate the successful applicationof the proposed control law to the automatic landing control problem, numericalsimulation is carried out based on the longitudinal nonlinear airplane model excited bythe wind shear turbulence. The simulation results show that the automatic landingmaneuver is successfully achieved with the satisfactory performance and the gainadaptation of the control law is made adequately within the limited gains.