• Title/Summary/Keyword: nonhost resistance

Search Result 6, Processing Time 0.023 seconds

Different oxidative burst patterns occur during host and nonhost resistance responses triggered by Xanthomonas campestris in pepper

  • Kwak, Youn-Sig;Han, Ki-Soo;Lee, Jung-Han;Lee, Kyung-Hee;Chung, Woo-Sik;Mysore, Kirankumar S.;Kwon, Young-Sang;Kim, Hee-Kyu;Bae, Dong-Won
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.244-254
    • /
    • 2009
  • The hypersensitive reaction (HR) is the most common plant defense reaction against pathogens. HR is produced during both host- and nonhost-incompatible interactions. Several reports suggest that similarities exist between host and nonhost resistances. We assayed the pattern of generation of reactive oxygen species (ROS) and scavenging enzyme activities during nonhost pathogen-plant interactions (Xanthomonas campestris pv. campestris/Capsicum annuum L.) and incompatible host pathogen-plant interactions (Xanthomonas campestris pv. vesicatoria race1/Capsicum annuum L.). Both ${O_2}^-\;and\;H_2O_2 $ accumulated much faster during nonhost resistance when compared to the host resistance. The scavenging enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were also different during the host- and nonhost-incompatible interactions. CAT activity was much higher during nonhost resistance, and several new isozymes of SOD and POX were detected during nonhost resistance when compared to the host resistance. Lipoxygenase (LOX) activity was higher in host resistance than nonhost resistance during the early stages of infection. Interestingly, the nitric oxide (NO) radical accumulated equal amounts during both host and nonhost resistance at early stages of infection. Further studies are needed to determine the specific pathways underlying these differences between host and nonhost resistance responses.

A Marine Bacterium with Animal-Pathogen-Like Type III Secretion Elicits the Nonhost Hypersensitive Response in a Land Plant

  • Boyoung Lee;Jeong-Im Lee;Soon-Kyeong Kwon;Choong-Min Ryu;Jihyun F. Kim
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.584-591
    • /
    • 2023
  • Active plant immune response involving programmed cell death called the hypersensitive response (HR) is elicited by microbial effectors delivered through the type III secretion system (T3SS). The marine bacterium Hahella chejuensis contains two T3SSs that are similar to those of animal pathogens, but it was able to elicit HR-like cell death in the land plant Nicotiana benthamiana. The cell death was comparable with the transcriptional patterns of H. chejuensis T3SS-1 genes, was mediated by SGT1, a general regulator of plant resistance, and was suppressed by AvrPto1, a type III-secreted effector of a plant pathogen that inhibits HR. Thus, type III-secreted effectors of a marine bacterium are capable of inducing the nonhost HR in a land plant it has never encountered before. This suggests that plants may have evolved to cope with a potential threat posed by alien pathogen effectors. Our work documents an exceptional case of nonhost HR and provides an expanded perspective for studying plant nonhost resistance.

Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection

  • Chang, Sung Pae;Jeon, Yong Ho;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.311-320
    • /
    • 2016
  • Xanthomonas axonopodis pv. glycines (Xag) is a necrotrophic bacterial pathogen of the soybean that causes bacterial pustules and is a nonhost pathogen of the chili pepper. In the current study, chili pepper fruit wound inoculated in planta with Xag 8ra formed necrotic lesions on the fruit surface and induced several structural and chemical barriers systemically in the fruit tissue. The initial defense response included programmed cell death of necrotizing and necrotized cells, which was characterized by nuclear DNA cleavage, as detected by TUNEL-confocal laser scanning microscopy (CLSM), and phosphatidylserine exposure on cell walls distal to the infection site, as detected by Annexin V FLUOS-CLSM. These two responses may facilitate cell killing and enhance transportation of cell wall materials used for cell wall thickening, respectively. The cells beneath the necrotic tissue were enlarged and divided to form periclinal cell walls, resulting in extensive formation of several parallel boundary layers at the later stages of infection, accompanying the deposition of wall fortification materials for strengthening structural defenses. These results suggest that nonhost resistance of chili pepper fruit against the nonhost necrotrophic pathogen Xag 8ra is activated systematically from the initial infection until termination of the infection cycle, resulting in complete inhibition of bacterial pathogenesis by utilizing organspecific in situ physiological events governed by the expression of genes in the plant fruit organ.

Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato

  • Park, Yong-Soon;Jeon, Myeong-Hoon;Lee, Sung-Hee;Moon, Jee-Sook;Cha, Jae-Soon;Kim, Hak-Yong;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.748-754
    • /
    • 2005
  • Pseudomonas syringae pv. tomato (Pst) causes a bacterial speck disease in tomato and Arabidopsis. In Chinese cabbage, in which host-pathogen interactions are not well understood, Pst does not cause disease but rather elicits a hypersensitive response. Pst induces localized cell death and $H_2O_2$ accumulation, a typical hypersensitive response, in infiltrated cabbage leaves. Pre-inoculation with Pst was found to induce resistance to Erwinia carotovora subsp. carotovora, a pathogen that causes soft rot disease in Chinese cabbage. An examination of the expression profiles of 12 previously identified Pst-inducible genes revealed that the majority of these genes were activated by salicylic acid or BTH; however, expressions of the genes encoding PR4 and a class IV chitinase were induced by ethephon, an ethylene-releasing compound, but not by salicylic acid, BTH, or methyl jasmonate. This implies that Pst activates both salicylate-dependent and salicylate-independent defense responses in Chinese cabbage.

Current Researches on Resistance to Soybean Cyst Nematode and Prospects (콩 씨스트 선충 저항성 연구현황과 전망)

  • Kim, Dong-Gun;Kim, Yong-Chul;Kim, Sun-Tae;Ko, Byong-Gu;Han, Won-Hyung;Park, Young-Hoon;Choi, In-Soo
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.101-111
    • /
    • 2012
  • Soybean cyst nematode(SCN) (Heterodera glycines Ichinohe) causes the greatest yield loss to soybean compared to any other pest worldwide. Yield loss due to SCN is estimated 7.6 million megagrams in the USA and nearly 9 million worldwide. SCN causes yield reductions by feeding on plant nutrients, retarding root growth, and inhibiting Bradyrhizpbium japonicum(Kirchner) Buchanan nodulation. The primary methods for controlling SCN include planting resistant cultivars and rotation with nonhost crops. Genetically diverse field populations of SCN combined with the limited germplasm base of commercial soybean for resistance could potentially leads to population shifts over time, and this makes controlling H. glycines more difficult. This paper reviewed the importance of soybean, soybean cyst nematode, researches on resistance to SCN, and prospects. Tremendous effort must still be endeavored for elucidating resistance mechanisms and managing H. glycines in the soybean field.