Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.12.2015.0256

Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection  

Chang, Sung Pae (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
Jeon, Yong Ho (Department of Bioresource Sciences, Andong National University)
Kim, Young Ho (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
Publication Information
The Plant Pathology Journal / v.32, no.4, 2016 , pp. 311-320 More about this Journal
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a necrotrophic bacterial pathogen of the soybean that causes bacterial pustules and is a nonhost pathogen of the chili pepper. In the current study, chili pepper fruit wound inoculated in planta with Xag 8ra formed necrotic lesions on the fruit surface and induced several structural and chemical barriers systemically in the fruit tissue. The initial defense response included programmed cell death of necrotizing and necrotized cells, which was characterized by nuclear DNA cleavage, as detected by TUNEL-confocal laser scanning microscopy (CLSM), and phosphatidylserine exposure on cell walls distal to the infection site, as detected by Annexin V FLUOS-CLSM. These two responses may facilitate cell killing and enhance transportation of cell wall materials used for cell wall thickening, respectively. The cells beneath the necrotic tissue were enlarged and divided to form periclinal cell walls, resulting in extensive formation of several parallel boundary layers at the later stages of infection, accompanying the deposition of wall fortification materials for strengthening structural defenses. These results suggest that nonhost resistance of chili pepper fruit against the nonhost necrotrophic pathogen Xag 8ra is activated systematically from the initial infection until termination of the infection cycle, resulting in complete inhibition of bacterial pathogenesis by utilizing organspecific in situ physiological events governed by the expression of genes in the plant fruit organ.
Keywords
chili pepper; hypersensitive response; programmed cell death; Xanthomonas axonopodis pv. glycines;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Wang, K., Senthil-Kumar, M., Ryu, C. M., Kang, L. and Mysore, K. S. 2012. Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol. 158:1789-1802.   DOI
2 Wyllie, A. H. 1980. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555-556.   DOI
3 Wyllie, A. H., Kerr, J. F. and Currie, A. R. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251-306.   DOI
4 Yeung, E. C. 1998. A beginner's guide to the study of plant structure. In: Tested studies for laboratory teaching, ed. S. J. Karcher, pp. 125-142. Proceedings of the 19th Workshop/Conference of the Association for Biology Laboratory Education (ABLE). Kendall/Hunt Publishing, Dubuque, IA, USA.
5 Yun, B. W. and Loake, G. J. 2002. Plant defense responses: current status and future exploitation. J. Plant Biotechnol. 4:1-6.
6 Agrios, G. N. 2005. Plant pathology. 5th ed. Academic Press, San Diego, CA, USA.
7 Biggs, A. R. 1986. Phellogen regeneration in injured peach tree bark. Ann. Bot. 57:463-470.   DOI
8 Cowan, M. M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12:564-582.
9 Biggs, A. R. 1989. Temporal changes in the infection court after wounding of peach bark are associated with cultivar variation in infection by Leucostoma persoonii. Phytopathology 79:627-630.   DOI
10 Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., Guo, W. J., Kim, J. G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F. F., Somerville, S. C., Mudgett, M. B. and Frommer, W. B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527-532.   DOI
11 Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35:495-516.   DOI
12 Esau, K. 1977. Anatomy of seed plants. 2nd ed. John Wiley & Sons, New York, NY, USA. 550 pp.
13 Fadeel, B. and Xue, D. 2009. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 44:264-277.   DOI
14 Fan, J., Crooks, C., Creissen, G., Hill, L., Fairhurst, S., Doerner, P. and Lamb, C. 2011. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331:1185-1188.   DOI
15 Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227.   DOI
16 Gomes, E., Jakobsen, M. K., Axelsen, K. B., Geisler, M. and Palmgren, M. G. 2000. Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12:2441-2454.   DOI
17 Granville, D. J., Carthy, C. M., Hunt, D. W. and McManus, B. M. 1998. Apoptosis: molecular aspects of cell death and disease. Lab Invest. 78:893-913.
18 Heath, M. C. 2000. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 3:315-319.   DOI
19 Greenberg, J. T., Guo, A., Klessig, D. F. and Ausubel, F. M. 1994. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551-563.   DOI
20 Ham, J. H., Kim, M. G., Lee, S. Y. and Mackey, D. 2007. Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola. Plant J. 51:604-616.   DOI
21 Hof, A., Zechmann, B., Schwammbach, D., Huckelhoven, R. and Doehlemann, G. 2014. Alternative cell death mechanisms determine epidermal resistance in incompatible barley-Ustilago interactions. Mol. Plant-Microbe Interact. 27:403-414.   DOI
22 Holub, E. B. and Cooper, A. 2004. Matrix, reinvention in plants: how genetics is unveiling secrets of non-host disease resistance. Trends Plant Sci. 9:211-214.   DOI
23 Hwang, I., Lim, S. M. and Shaw, P. D. 1992. Use of detached soybean cotyledons for testing pathogenicity of Xanthomonas campestris pv. glycines. Plant Dis. 76:182-183.   DOI
24 Jensen W. A. 1962. Botanical histochemistry: principles and practice. W. H. Freeman, San Francisco, CA, USA.
25 Jeon, Y. H. and Kim, Y. H. 2008. Differential structural responses of ginseng root tissues to different initial inoculum levels of Paenibacillus polymyxa GBR-1. Plant Pathol. J. 24:352-356.   DOI
26 Jeon, Y. H., Kim, J. G., Chang, S. P., Hwang, I. and Kim, Y. H. 2002. Subcellular responses in nonhost plant infected with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. glycines. Plant Pathol. J. 18:115-120.   DOI
27 Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.   DOI
28 Kim, N. H. and Hwang, B. K. 2015. Pepper pathogenesisrelated protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling. Plant J. 81:81-94.   DOI
29 Kim, J. H., Kim, S. G., Kim, M. S., Jeon, Y. H., Cho, D. H. and Kim, Y. H. 2009. Different structural modifications associated with development of ginseng root rot caused by Cylindrocarpon destructans. Plant Pathol. J. 25:1-5.   DOI
30 Kim, K. H., Yoon, J. B., Park, H. G., Park, E. W. and Kim, Y. H. 2004. Structural modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology 94:1295-1304.   DOI
31 Kim, S. G., Kim Y. H., Kim, H. T. and Kim, Y. H. 2008. Effect of delayed inoculation after wounding on the development of anthracnose disease caused by Colletotrichum acutatum on chili pepper fruit. Plant Pathol. J. 24:392-399.   DOI
32 Kim, Y. H. and Kim, K. H. 2002. Abscission layer formation as a resistance response of peruvian apple cactus against Glomerella cingulata. Phytopathology 92:964-969.   DOI
33 Kim, Y. H., Kim, K. S. and Riggs, R. D. 2010. Differential subcellular responses in resistance soybeans infected with soybean cyst nematode races. Plant Pathol. J. 26:154-158.   DOI
34 Kim, Y. H., Riggs, R. D. and Kim, K. S. 1987. Structural changes associated with resistance of soybean to Heterodera glycines. J. Nematol. 19:177-187.
35 Kolattukudy, P. E. 1996. Biosynthetic pathways of cutin and waxes and their sensitivity to environmental stresses. In: Plant cuticle: an integrated functional approach, ed. by G. Kerstiens, pp. 83-108. BIOS Science Publishing, Oxford, UK.
36 Melotto, M., Underwood, W. and He, S. Y. 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46:101-122.   DOI
37 Lord, C. E. and Gunawardena, A. H. 2012. The lace plant: a novel model system to study plant proteases during developmental programmed cell death in vivo. Physiol. Plant. 145: 114-120.   DOI
38 Ma, L., Sun, N., Liu, X., Jiao, Y., Zhao, H. and Deng, X. W. 2005. Organ-specific expression of Arabidopsis genome during development. Plant Physiol. 138:80-91.   DOI
39 McDowell, J. M. and Woffenden, B. J. 2003. Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol. 21:178-183.   DOI
40 Mysore, K. S. and Ryu, C. M. 2004. Nonhost resistance: how much do we know? Trends Plant Sci. 9:97-104.
41 Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. and Riccardi, C. 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139:271-279.   DOI
42 Park, B. K. and Hwang, I. 1999. Identification of hrcC, hrpF, and miaA genes of Xanthomonas campestris pv. glycines 8ra: roles in pathogenicity and inducing hypersensitive response on nonhost plants. Plant Pathol. J. 15:21-27.
43 Parrish, J. Z. and Xue, D. 2006. Cuts can kill: the roles of apoptotic nucleases in cell death and animal development. Chromosoma 115:89-97.   DOI
44 Rico, A. and Preston, G. M. 2008. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol. Plant-Microbe Interact. 21:269-282.   DOI
45 Strange, R. N. 1998. Plants under attack II. Sci. Prog. 81:35-68.
46 Rittinger, P. A., Biggs, A. R. and Peirson, D. R. 1987. Histochemistry of lignin and suberin deposition in boundary layers formed after wounding in various plant species and organs. Can. J. Bot. 65:1886-1892.   DOI
47 Senthil-Kumar, M. and Mysore, K. S. 2013. Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 51:407-427.   DOI
48 Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43.   DOI
49 Taheri, P. and Tarighi, S. 2011. Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani. Eur. J. Plant Pathol. 129:511-528.   DOI
50 Taheri, P. and Tarighi, S. 2012. The role of pathogenesis-related proteins in the tomato-Rhizoctonia solani interaction. J. Bot. 2012:137037.
51 van Engeland, M., Kuijpers, H. J., Ramaekers, F. C., Reutelingsperger, C. P. and Schutte, B. 1997. Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp. Cell Res. 235:421-430.   DOI
52 van Engeland, M., Nieland, L. J., Ramaekers, F. C., Schutte, B. and Reutelingsperger, C. P. 1998. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1-9.   DOI
53 Vera Cruz, C. M., Bai, J., Ona, I., Leung, H., Nelson, R. J., Mew, T. W. and Leach, J. E. 2000. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc. Natl. Acad. Sci. U. S. A. 97:13500-13505.   DOI