• Title/Summary/Keyword: nondestructive testing

Search Result 1,674, Processing Time 0.028 seconds

Modeling of Elastodynamic Problems in Finite Solid Media (유한 고체내 탄성동역학 문제의 모델링)

  • Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.138-149
    • /
    • 2000
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi mode conversion of guided wave scattering problems. Time dependent wave forms are obtained through the inverse Fourier transformation of the numerical solutions in the frequency domain. 3D BEM program development is underway to model more practical ultrasonic wave signals. Some encouraging numerical results have recently been obtained in comparison with the analytical solutions for wave propagation in a bar subjected to time harmonic longitudinal excitation. It is expected that the presented modeling techniques for elastic wave propagation and scattering can be applied to establish quantitative nondestructive evaluation techniques in various ways.

  • PDF

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Comparison of Longitudinal Wave Velocity in Concrete by Ultrasonic Pulse Velocity Method and Impact-Echo Method (초음파 속도법과 충격반향기법에 의한 콘크리트의 종파 속도 비교)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.98-106
    • /
    • 2003
  • Nondestructive test (NDT) provides much information on concrete without damage of structural functions. Of NDT methods, elastic wave propagation methods, such as ultrasonic pulse velocity (UPV) method and impact-echo (IE) method, have been successfully used to estimate the strength, elastic modulus, and Poisson's ratio of concrete as well as to detect the internal microstructural change and defects. In this study, the concretes with water-binder ratio ranging from 0.27 to 0.50 and fly ash content of 20% were made and then their longitudinal wave velocities were measured by UPV and IE method, respectively. Test results showed that the UPV is greater than the longitudinal wave velocity measured by the If method, i.e., rod-wave velocity obtained from the same concrete cylinder. It was found that the difference between the two types of velocities decreased with increasing the ages of concrete and strength level. Moreover, for the empirical formula, the dynamic Poisson's ratio, static and dynamic moduli of elasticity, and velocity-strength relationship were determined. It was observed that the Poisson's ratio and the modulus of elasticity determined by the dynamic method are greater than those determined by the static test. Consequently, for the more accurate estimation of concrete properties using the elastic wave velocities, the characteristics of these velocities should be understood.

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Effect of Magneto-acoustic Emission of Reactor Pressure Vessel Materials Irradiated by Neutrons (중성자에 조사된 원자로 압력용기 재료(SA508)의 Magneto-acoustic emission 효과)

  • Ok, Chi-Il;Lee, Jong-Kyu;Park, Duck-Gun;Hong, Jun-Hwa;Kim, Jang-Whan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.433-438
    • /
    • 1999
  • Magneto-acoustic emission (MAE) energy and hardness were measured in the reactor pressure vessel steel (SA508 Steel) for the various neutron fluence, irradiated dose up to $10^{18}n/cm^2$. The hardness was nearly a constant up to $10^{16}n/cm^2$, but it was rapidly increased with an increase of the neutron irradiation above $10^{17}n/cm^2$. It may be considered that the increase of hardness is due to the hindrance of dislocation motion induced defect clusters by irradiation. On the other hand. the MAE energy was slowly decreased as the neutron irradiation increased up to $10^{16}n/cm^2$ and it was rapidly decreased with an increase of the neutron irradiation above $10^{17}n/cm^2$. The decrease of the MAE energy may be considered as an increase of the defect clusters which is very sensitive to the $90^{\circ}$ domain wall motion. Furthermore, the change of MAE energy and hardness had nearly a linear relationship. but the change of MAE energy was more significant than the change of the hardness. Therefore, MAE may be considered as a very useful technique for the nondestructive evaluation of irradiation damage.

  • PDF

Analysis of Elastic Constants in SiC Particulate Reinforced Al Matrix Composites by Resonant Ultrasound Spectroscopy (초음파 공명 분광법(RUS)을 이용한 SiC 입자강화 Al 기지복합재료의 탄성계수 해석)

  • Jung, Hyun-Kyu;Cheong, Yong-Moo;Joo, Young-Sang;Hong, Soon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.180-188
    • /
    • 1999
  • The dynamic elastic properties of metal matrix composites were investigated by resonant ultrasound spectroscopy(RUS). The composites used in this study consisted of 2124 aluminum alloy reinforced with different concentrations of SiC particles. RUS can determine the nine independent elastic stiffness($C_{ij}$) for the orthorhombic symmetry on a small specimen simultaneously. The elastic constants were determined as a function of the volume fraction. A concept of effective aspect ratio. which combine the aspect ratio and the orientation of reinforcement. was used to calculate the initial moduli from Mori-Tanaka theory for the input of RUS minimization code. Young's moduli can be obtained from the measured stiffnesses. The results show that the elastic stiffness increases with increment of the particle content. The behavior of elastic stiffness indicates that the particle redistribution induced by the extrusion process enlarges the transversely isotropic symmetry as the fraction of reinforced particles increase. This relationship could be used for determination of the volume fractions of reinforcement as a potential tool of nondestructive material characterization.

  • PDF

Analysis on Propagation Characteristics and Experimental Verification of $A_1$ Circumferential Waves in Nuclear Fuel Rods Coated with Oxide Layers (산화막 피복 원전 연료봉에서 $A_1$ 원주파의 전파 특성 해석과 실험적 검증)

  • Joo, Young-Sang;Ih, Jeong-Guon;Jung, Hyun-Kyu;Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.189-199
    • /
    • 1999
  • The resonance scattering of acoustic waves from the cylindrical shells of nuclear fuel rods coated with oxide layers has been theoretically modeled and numerically analyzed for the propagation characteristics of the circumferential waves. The normal mode solutions of the scattering pressure of the coated shells have been obtained. The pure resonance components have been isolated using the newly proposed inherent background coefficients. The propagation characteristics of resonant circumferential waves for the shells coated with oxide layers are affected by the presence and the thickness of an oxide layer. The characteristics have been experimentally confirmed through the method of isolation and identification of resonances. The change of the phase velocity of the $A_1$ circumferential wave mode for the coated shell is negligible at the specified partial waves in spite of the presence of the oxide layer and the increase in coating thickness. Utilizing the invariability characteristics of the phase velocity of the $A_1$ mode, the oxide layer thickness of the coated shells can be estimated. A new nondestructive technique for the relative measurement of the coating thickness of coated shells has been proposed.

  • PDF

Magnetic Susceptibility depending on the Thermal Degradation of HK-40 Steel (HK-40강의 열화도에 따른 자화율의 변화)

  • Kim, Jeong-Min;Son, De-Rac;Park, Jong-Seo;Nahm, Seung-Hoon;Kim, Dong-Gyun;Han, Sang-In;Choi, Song-Chun;Ryu, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • Since the used materials of furnace heater tube with different kinds of thermal degradation were not commonly available, the HK-40 steel specimens were heat-treated isothermally at elevated temperature to simulate the microstructure at the service temperature. HK-40 steel specimens with five different aging time were prepared by isothermal heat treatment at $1050^{\circ}C$. The characteristics of the magnetic susceptibility have been investigated for the degradation evaluation of HK-40 steel. The magnetic susceptibility at room temperature increases as the extent of degradation of the materials increases. The variation of magnetic susceptibility was compared with the variation of tensile properties and Vickers hardness. To investigate the effect of the microsturctural change on the characteristics of tensile properties, hardness and magnetic susceptibility, the microstructures were examined by a scanning electron microscope(SEM) and the chemical compositions were analyzed by a energy spectrometer of SEM. As a result, the magnetic susceptibility method can be suggested as one of the nondestructive evaluation methods for the degradation of the HK-40 steel.

Development of Non-Destructive Sorting Technique for Viability of Watermelon Seed by Using Hyperspectral Image Processing (초분광 영상기술을 이용한 수박종자 발아여부 비파괴 선별기술 개발)

  • Bae, Hyungjin;Seo, Young-Wook;Kim, Dae-Yong;Lohumi, Santosh;Park, Eunsoo;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • Seed viability is one of the most important parameters that is directly related with seed germination performance and seedling emergence. In this study, a hyperspectral imaging (HSI) system having a range of 1000-2500 nm was used to classify viable watermelon seeds from nonviable seeds. In order to obtain nonviable watermelon seeds, a total of 96 seeds were artificially aged by immersing the seeds in hot water ($25^{\circ}C$) for 15 days. Further, hyperspectral images for 192 seeds (96 normal and 96 aged) were acquired using the developed HSI system. A germination test was performed for all the 192 seeds in order to confirm their viability. Spectral data from the hyperspectral images of the seeds were extracted by selecting pixels from the region of interest. Each seed spectrum was averaged and preprocessed to develop a classification model of partial least square discriminant analysis (PLS-DA). The developed PLS-DA model showed a classification accuracy of 94.7% for the calibration set, and 84.2% for the validation set. The results demonstrate that the proposed technique can classify viable and nonviable watermelon seeds with a reasonable accuracy, and can be further converted into an online sorting system for rapid and nondestructive classification of watermelon seeds with regard to viability.

A Study for a Near-Field Microwave Microscope Using a Tuning Fork Distance Control System in liquid Environment (튜닝폭 거리조절 센서를 이용한 근접장 마이크로파 현미경의 수중 측정을 위한 연구)

  • Kim, Song-Hui;Yoo, Hyung-Keun;Babajanyan, Arsen;Kim, Jong-Chul;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.345-353
    • /
    • 2007
  • We have obtained a topographical image nondestructively for a Cu thin film in liquid using a near-field scanning microwave microscope (NSMM), its operating frequency was 3.5 to 5.5 GHz. We have kept a distance of 10 nm between tip and sample using a quartz tuning fork shear force feedback system. As an end of tip was attached to one prong of the quartz tuning fork has a length of 2 mm, the only tip of tuning fork was immersed in water tank. A loss cause by evaporation in water tank is regulated with actuator was connected to a supplementary tank. Moreover, using a revise program of LabView, we could increase the accuracy of a measurement in liquid.