• Title/Summary/Keyword: non-viral gene delivery

Search Result 40, Processing Time 0.035 seconds

Enhancement of Gene Delivery to Cancer Cells by a Retargeted Adenovirus

  • Oh Kwang Seok;Engler Jeffrey A.;Joung In Sil
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.179-182
    • /
    • 2005
  • The inefficiency of in vivo gene transfer using currently available vectors reflects a major hurdle in cancer gene therapy. Both viral and non-viral approaches that improve gene transfer efficiency have been described, but suffer from a number of limitations. Herein, a fiber-modified adenovirus, carrying the small peptide ligand on the capsid, was tested for the delivery of a transgene to cancer cells. The fiber-modified adenovirus was able to mediate the entry and expression of a $\beta$-galactosidase into cancer cells with increased efficiency compared to the unmodified adenovirus. Particularly, the gene transfer efficiency was improved up to 5 times in OVCAR3 cells, an ovarian cancer cell line. Such transduction systems hold promise for delivering genes to transferrin receptor overexpressing cancer cells, and could be used for future cancer gene therapy.

Characteristic as a Gene Delivery System of Water Soluble Chitosan Conjugated with Cationic Peptide (양이온 펩타이드가 컨쥬게이트된 수용성 키토산의 유전자 전달체로서의 특성)

  • Kim, Young-Min;Kim, Ji-Ho;Park, Seong-Cheol;Park, Yung-Hoon;Jang, Mi-Kyeong
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.300-311
    • /
    • 2016
  • Recently gene delivery has been designed newly using bioactive biomaterial and applied in the various field by many researchers. In this study, we proposed a new gene delivery system which has the capability of targeting effect in the specific tissue and remarkably enhanced transfection efficiency. We investigated $^1H-NMR$ spectroscopy, particle size analyzer and gel retardation to confirm the correct preparation of gene delivery. Also, we identified the hemo-compatibility of gene delivery by hemolysis assay, non-cytotoxicity by MTT test and transfection efficiency. The uptake mechanism of the gene carrier was confirmed using inhibitor agent such as sodium azide, indomethacin, quercetin, colchicine, and chloropromazine. As a results, it was identified that gene carrier prepared by in this study entered in the cell by the microtubule-dependent, energy-dependent and clathrin-mediated endocytosis pathway.

Macromolecular Cytosolic Delivery: Cell Membranes as the Primary Obstacle

  • Larson, Gretchen M.;Lee, Kyung-Dall
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.621-628
    • /
    • 1998
  • The "evolution" of a thing, a custom, an organ is thus by no means its progressus toward a goal, even less a logical progressus by the shortest route and with the least expendit ure of force, but a succession of more or less profound, mutually independent processes of subduing, plus the resistances they encounter, the attempts at transformation for the purpose of defense and reaction, and the results of successful counteractions. The form is fluid, but the "meaning" is even more so (Friedrich W. Nietzsche).

  • PDF

Current Status of Gene Therapy as a New Drug Delivery System (신약전달기술체계인 유전자 치료의 현재까지의 개발동향)

  • Bae, Yun-Sung;Cho, Jung-Yoon;Ji, Sang-Mi;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2002
  • Gene therapy is fundamentally a sophisticated drug delivery technology to cure a disease by the transfer of genetic material to modify living cells. In other words, the gene is used as a therapeutic drug much like a chemical compound is employed in chemotherapy. Currently almost 600 clinical trials are underway worldwide since the first clinical trials carried out in 1990 to treat adenosine deaminase deficiency using retroviral vectors. Despite the great progress still is there no gene therapy product being approved as a new drug. This is partly due to a lack of an ideal gene delivery system that is safe and can provide stable, optimal level production of the therapeutic proteins in the cell. This review covers the current status of several different biological and physico-chemical agents that are being developed as gene delivery vehicles. Although gene therapy promises great hopes toward the cure of a broad spectrum of genetic and acquired diseases, the success of gene therapy heavily asks for the development of vector systems for safe and efficient application in humans.

Synthesis and characterization of transferrin-polyethylenimine conjugate for targeted gene delivery

  • Lee, Kyung-Man;Kim, In-Sook;Shin, Sang-Chul;Oh, In-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.315.2-316
    • /
    • 2003
  • Polyethylenimine (PEI) has been used as a non-viral gene delivery carrier. To improve the efficacy of transfection, transferrin was incorporated by covalent linkage to PEI. As a model plasmid DNA, pHME185/b-gal, a mammalian expression vector was used. The transferrin-polyethylenimine (TfPEI) was synthesized by conjugate PEI with transferrin using sodium periodateand and characterized by FT-IR and 1H-NMR. (omitted)

  • PDF

Current advances in adenovirus nanocomplexes: more specificity and less immunogenicity

  • Kang, Eun-Ah;Yun, Chae-Ok
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.781-788
    • /
    • 2010
  • An often overlooked issue in the field of adenovirus (Ad)-mediated cancer gene therapy is its limited capacity for effective systemic delivery. Although primary tumors can be treated effectively with intralesional injection of conventional Ad vectors, systemic metastasis is difficult to cure. Systemic administration of conventional naked Ads leads to acute accumulation of Ad particles in the liver, induction of neutralizing antibody, short blood circulation half-life, non-specific biodistribution in undesired organs, and low selective accumulation in the target disease site. Versatile strategies involving the modification of viral surfaces with polymers and nanomaterials have been designed for the purpose of maximizing Ad anti-tumor activity and specificity by systemic administration. Integration of viral and non-viral nanomaterials will substantially advance both fields, creating new concepts in gene therapeutics. This review focuses on current advances in the development of smart Ad hybrid nanocomplexes based on various design-based strategies for optimal Ad systemic administration.

The Synthesis of Artery Wall Targeted Gene Carrier Using Low Molecular Water-Soluble Chitosan (저분자량 수용성 키토산을 이용한 동맥 벽 표적성 유전자 전달체의 합성)

  • Choi Chang-Yong;Jang Mi-Kyeong;Nah Jae-Woon
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • Non-viral gene carriers continue to attract a great deal of interest due to advantageous safety profile. Among the non-viral gene carriers, cationic liposomes or synthetic gene carriers are efficient DNA carriers in vitro. but their in vivo applications are greatly hampered because of low biocompatibility. On the other hand, chitosan, a natural cationic polysaccharide, is a candidate non-viral vector for gene delivery because of its low cytotoxicity and high positive charges. In this work, targeted gene carrier was synthesized to target artery wall cells using low molecular water-soluble chitosan (LMWSC). The molecular weight $(M_W)$ and degree of de acetylation (DDA) of LMWSC were measured by relative viscometer and Kina titration. respectively. The structure of LMWSC was analyzed by measuring FTIR, $^1H-NMR,\;and\;^{13}C-NMR$. AWBP-PEG-g-LMWSC was synthesized by conjugation of the artery wall binding peptide (AWBP), a specific targeting peptide, to the end of pegylated LMWSC as a gene carrier to target artery wall cells. The synthesized AWBP-PEG-g-LMWSC were analyzed by measuring FTIR, $^1H-NMR$, zeta -potentiometer, and atomic force microscopy (AFM).

New paradigms on siRNA local application

  • Pan, Meng;Ni, Jinwen;He, Huiming;Gao, Shan;Duan, Xiaohong
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Small interfering RNA (siRNA) functions through pairing with specific mRNA sequences and results in the mRNA's degradation. It is a potential therapeutic approach for many diseases caused by altered gene expression. The delivery of siRNA is still a major problem due to its rapid degradation in the circulation. Various strategies have been proposed to help with the cellular uptake of siRNA and short or small hairpin RNA (shRNA). Here, we reviewed recently published data regarding local applications of siRNA. Compared with systemic delivery methods, local delivery of siRNA/shRNA has many advantages, such as targeting the specific tissues or organs, mimicking a gene knockout effect, or developing certain diseases models. The eye, brain, and tumor tissues are 'hot' target tissues/organs for local siRNA delivery. The siRNA can be delivered locally, in naked form, with chemical modifications, or in formulations with viral or non-viral vectors, such as liposomes and nanoparticles. This review provides a comprehensive overview of RNAi local administration and potential future applications in clinical treatment.

Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis

  • Cha, Eun Bi;Shin, Keun Koo;Seo, Jinho;Oh, Doo-Byoung
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.442-447
    • /
    • 2020
  • The non-viral delivery of genes into macrophages, known as hard-to-transfect cells, is a challenge. In this study, the microporation of a CpG-free and small plasmid (pCGfd-GFP) showed high transfection efficiency, sustainable transgene expression, and good cell viability in the transfections of Raw 264.7 and primary bone marrow-derived macrophages. The non-viral method using the pCGfd vector encoding anti-EGFR single-chain Fv fused with Fc (scFv-Fc) generated the macrophages secreting anti-EGFR scFv-Fc. These macrophages effectively phagocytized tumor cells expressing EGFR through the antibody-dependent mechanism, as was proved by experiments using EGFR-knockout tumor cells. Finally, peri-tumoral injections of anti-EGFR scFv-Fc-secreting macrophages were shown to inhibit tumor growth in the xenograft mouse model.

Transfection Property of a New Cholesterol-Based Cationic Lipid Containing Tri-2-Hydroxyethylamine as Gene Delivery Vehicle

  • Kim, Bieong-Kil;Doh, Kyung-Oh;Hwang, Guen-Bae;Seu, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.866-871
    • /
    • 2012
  • A novel cholesterol-based cationic lipid containing a tri-2-hydroxyethylamine head group and ether linker (Chol-THEA) was synthesized and examined as a potent gene delivery vehicle. In the preparation of cationic liposome, the addition of DOPE as helper lipid significantly increased the transfection efficiency. To find the optimum transfection efficiency, we screened various weight ratios of DOPE and liposome/DNA (N/P). The best transfection efficiency was found at the Chol-THEA:DOPE weight ratio of 1:1 and N/P weight ratio of 10~15. Most of the plasmid DNA was retarded by this liposome at the optimum N/P weight ratio of 10. The transfection efficiency of Chol-THEA liposome was compared with DOTAP, Lipofectamine, and DMRIE-C using the luciferase assay and GFP expression. Chol-THEA liposome with low toxicity had better or similar potency of gene delivery compared with commercial liposomes in COS-7, Huh-7, and MCF-7 cells. Therefore, Chol-THEA could be a useful non-viral vector for gene delivery.