• 제목/요약/키워드: non-uniform thickness

검색결과 246건 처리시간 0.024초

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • 제60권4호
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Closed form solution for displacements of thick cylinders with varying thickness subjected to non-uniform internal pressure

  • Eipakchi, H.R.;Rahimi, G.H.;Esmaeilzadeh Khadem, S.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.731-748
    • /
    • 2003
  • In this paper a thick cylindrical shell with varying thickness which is subjected to static non-uniform internal pressure is analyzed. At first, equilibrium equations of the shell have been derived by the energy principle and by considering the first order theory of Mirsky-Herrmann which includes transverse shear deformation. Then the governing equations which are, a system of differential equations with varying coefficients have been solved analytically with the boundary layer technique of the perturbation theory. In spite of complexity of modeling the conditions near the boundaries, the method of this paper is very capable of providing a closed form solution even near the boundaries. Displacement predictions are in a good agreement with the calculated finite elements and other analytical results. The convergence of solution is very fast and the amount of calculations is less than the Frobenius method.

초소성 블로우 성형품의 두께분포 균일화 연구 (A Study on the Uniform Thickness Distribution in Superplastic Blow Forming Process)

  • 이정환;김현철;이영선;이상용;신평우
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.610-619
    • /
    • 1998
  • The superplastic blow forming technology has advantages of cost reduction and low material consumption. compared to the conventional sheet metal forming technology due to the capability of precisely forming with high elongation and low flow stress. however it has a disadvantage that its partial thickness distribution is non-uniform. A processing technology like diaphragm forming has been developed even though it is difficult to prepare materials for superplastic blow forming. in this study a hemisphere forming of sheet before superplastic forming. It was found that the rotary forming material was less in quantity of cavitation at pole than that of hemisphere part that was superplastic formed without rotary forming treatment. Also discussed are the critical strain which is closely related to cavity shape and size.

  • PDF

A parametric study on the free vibration of a functionally graded material circular plate with non-uniform thickness resting on a variable Pasternak foundation by differential quadrature method

  • Abdelbaki, Bassem M.;Ahmed, Mohamed E. Sayed;Al Kaisy, Ahmed M.
    • Coupled systems mechanics
    • /
    • 제11권4호
    • /
    • pp.357-371
    • /
    • 2022
  • This paper presents a parametric study on the free vibration analysis of a functionally graded material (FGM) circular plate with non-uniform thickness resting on a variable Pasternak elastic foundation. The mechanical properties of the material vary in the transverse direction through the thickness of the plate according to the power-law distribution to represent the constituent components. The equation of motion of the circular plate has been carried out based on the classical plate theory (CPT), and the differential quadrature method (DQM) is employed to solve the governing equations as a semi-analytical method. The grid points are chosen based on Chebyshev-Gauss-Lobatto distribution to achieve acceptable convergence and better accuracy. The influence of geometric parameters, variable elastic foundation, and functionally graded variation for clamped and simply supported boundary conditions on the first three natural frequencies are investigated. Comparisons of results with similar studies in the literature have been presented and two-dimensional mode shapes for particular plates have been plotted to illustrate the effect of variable thickness profile.

불평등 전계 시 에폭시와 N2, dry-air 혼합절연체의 절연파괴특성 (Electrical Breakdown Characteristics of Composite Insulation Composed of Epoxy Resins with N2, Dry-air in Non-uniform Field)

  • 정해은;박성희;강성화;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.462-463
    • /
    • 2007
  • SF6 widely used as insulating gas is rising as the environment problem. For decreasing this greenhouse gas, electrical breakdown characteristics of composite insulation composed of epoxy resins with N2, air are studied in non-uniform field. The gap of needle to plane was 3mm, 5mm. The pressure of air, nitrogen was varied within the range of 0.1~0.6MPa. The thickness of a needle is 1mm and the curvature radius of the end of needle is 100um. The diameter of a plane made of the stainless steel is 50mm. As a result of the experiment, the breakdown voltage is increased about 3 times when epoxy resins is composited. The thickness of epoxy resins filled opposite to electrode concentrated electric field weakly influences on breakdown voltage.

  • PDF

Non-uniform shrinkage in simply-supported composite steel-concrete slabs

  • Al-Deen, Safat;Ranzi, Gianluca;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.375-394
    • /
    • 2015
  • This paper presents the results of four long-term experiments carried out to investigate the time-dependent behaviour of composite floor slabs with particular attention devoted to the development of non-uniform shrinkage through the slab thickness. This is produced by the presence of the steel deck which prevents moisture egress to occur from the underside of the slab. To observe the influence of different drying conditions on the development of shrinkage, the four 3.3 m long specimens consisted of two composite slabs cast on Stramit Condeck $HP^{(R)}$ steel deck and two reinforced concrete slabs, with the latter ones having both faces exposed for drying. During the long-term tests, the samples were maintained in a simply-supported configuration subjected to their own self-weight, creep and shrinkage for four months. Separate concrete samples were prepared and used to measure the development of shrinkage through the slab thickness over time for different drying conditions. A theoretical model was used to predict the time-dependent behaviour of the composite and reinforced concrete slabs. This approach was able to account for the occurrence of non-uniform shrinkage and comparisons between numerical results and experimental measurements showed good agreement. This work highlights the importance of considering the shrinkage gradient in predicting shrinkage deformations of composite slabs. Further comparisons with experimental results are required to properly validate the adequacy of the proposed approach for its use in routine design.

두께방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 비틀림 좌굴 하중에 미치는 영향 (The Effect of Fiber Volume Fraction Non-uniformity through Thickness Direction on the Torsional Buckling Load of Cylindrical Composite Lattice Structure)

  • 전민혁;조현준;김연주;이미연;김인걸
    • Composites Research
    • /
    • 제36권2호
    • /
    • pp.80-85
    • /
    • 2023
  • 원통형 복합재 격자 구조는 필라멘트 와인딩 공법으로 제작되며 제작 공정에서 두께방향 섬유체적비 불균일이 발생할 수 있다. 섬유체적비 불균일은 구조의 강성에 영향을 미칠 수 있으며 강성 및 좌굴 특성이 변화할 수 있다. 본 연구에서는 두께방향 섬유체적비 불균일이 복합재 격자 구조의 비틀림 좌굴 하중에 미치는 영향에 대하여 분석하였다. 섬유체적비 변화에 의한 강성 변화를 유한요소 모델에 적용하였고 비틀림 하중을 가한 뒤 좌굴 해석을 수행하였다. 두께방향 섬유체적비 편차에 따른 좌굴 하중을 비교하였다. 섬유체적비 불균일에 의해 비틀림 좌굴 하중이 저하될 수 있음을 확인하였다.

Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions

  • Abdelhak, Zohra;Hadji, Lazreg;Daouadji, T. Hassaine;Adda Bedia, E.A.
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.267-291
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal buckling analysis of functionally graded material (FGM) sandwich plates with clamped boundary condition subjected to uniform, linear, and non-linear temperature rises across the thickness direction is developed. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present refined theory. The non-linear governing equations are solved for plates subjected to simply supported and clamped boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

초소성 판재 성형을 위한 유한요소 해석 및 실험에 관한 연구 (A Study on the Superplastic Sheet Forming by the FEM and Experiment)

  • 이승준;이정환;이영선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.866-872
    • /
    • 2000
  • Superplastic forming processes by characteristic of low flow stress and high elongation have advantages to reducing on production cost and weight because of the product of complex form could be made in one part. However superplastically termed part has a characteristic of non-uniform thickness distribution along forming direction. Especially. since the thickness distribution affects on mechanical properties of product. the uniform thickness is very important. There are two solution procedure of implicit and explicit procedure to analyze the superplastic forming. In this study to analyze the thickness distribution two kinds of commercial programs of DEFORM and PAM-STAMP which implicit and explicit code are used respectly. The results from the two Programs were compared with eath other As a result implicit code were more suitable than explicit code for superplastic forming analysis.

  • PDF

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • 비파괴검사학회지
    • /
    • 제37권2호
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.