DOI QR코드

DOI QR Code

Thermal buckling response of functionally graded sandwich plates with clamped boundary conditions

  • Abdelhak, Zohra (Universite Ahmed Zabana) ;
  • Hadji, Lazreg (Laboratoire des Materiaux & Hydrologie, Universite de Sidi Bel Abbes) ;
  • Daouadji, T. Hassaine (Laboratoire des Materiaux & Hydrologie, Universite de Sidi Bel Abbes) ;
  • Adda Bedia, E.A. (Laboratoire des Materiaux & Hydrologie, Universite de Sidi Bel Abbes)
  • Received : 2015.11.27
  • Accepted : 2016.05.20
  • Published : 2016.08.25

Abstract

In this research work, an exact analytical solution for thermal buckling analysis of functionally graded material (FGM) sandwich plates with clamped boundary condition subjected to uniform, linear, and non-linear temperature rises across the thickness direction is developed. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present refined theory. The non-linear governing equations are solved for plates subjected to simply supported and clamped boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The effects of aspect and thickness ratios, gradient index, on the critical buckling are all discussed.

Keywords

References

  1. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  2. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  3. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  4. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  5. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0
  6. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423 - 431. https://doi.org/10.1080/15376494.2014.984088
  7. Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  8. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013) "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  9. Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Therm. Stresses, 35, 677-694. https://doi.org/10.1080/01495739.2012.688665
  10. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  11. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  12. El-Hadek, M. and Tippur, H.V. (2003), "Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams", Int. J. Solids Struct., 40, 1885-1906. https://doi.org/10.1016/S0020-7683(03)00028-3
  13. Fukui, Y. (1991), "Fundamental investigation of functionally gradient material manufacturing system using centrifugal force", Int. J. Japanese Soci. Mech. Eng., 3, 144-148.
  14. Fukui, Y., Yamanaka, N. and Enokida, Y. (1997), "Bending strength of an AI-AI3Ni functionally graded material", Composites: Part B, 28 B, 37-43.
  15. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  16. Hebali et al. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. - ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  17. Javaheri, R. and Eslami, M.R. (2002), "Buckling of functionally graded plates under in-plane compressive loading", ZAMM, 82(4), 277-283. https://doi.org/10.1002/1521-4001(200204)82:4<277::AID-ZAMM277>3.0.CO;2-Y
  18. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates", AIAA, 40(1), 162-169. https://doi.org/10.2514/2.1626
  19. Javaheri, R., and Eslami, M. R., (2002), "Thermal Buckling of Functionally Graded Plates Based on Higher Order Theory", J. Therm. Stress, 25(1), 603-625. https://doi.org/10.1080/01495730290074333
  20. Koizumi, M. (1997), "FGM Activites in Japan", Composite: Part B, Vol. 28(1), 1-4.
  21. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modell., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  22. Samsam, B.A. and Eslami, M.R. (2005), "Buckling of imperfect functionally graded plates under in-plane compressive loading", Thin. Wall. Struct., 43, 1020-1036. https://doi.org/10.1016/j.tws.2005.01.002
  23. Samsam, B.A. and Eslami, M.R. (2005), "Effect of initial imperfection on thermal buckling of functionally graded plates", J. Therm. Stress, 28, 1183-1198. https://doi.org/10.1080/014957390967884
  24. Samsam, B. A. and Eslami, M. R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solids Struct., 43, 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005
  25. Samsam, B.A. and Eslami, M.R. (2007), "Buckling of Thick Functionally Graded Plates under Mechanical and Thermal Loads", Compos. Struct, 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001
  26. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
  27. Sohn, K.J. and Kim, J.H. (2008), "Structural stability of functionally graded panels subjected to aero-thermal loads", Compos. Struct., 82, 317-325. https://doi.org/10.1016/j.compstruct.2007.07.010
  28. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerospace Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  29. Xiang, S. and Kang, G.W. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech. A Solids, 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005
  30. Yamanouchi, M., Koizumi, M. and Shiota, I. (1990), Proceedings of the 1st Int. Symp. Functionally Gradient Materials, Sendai, Japan.
  31. Zenkour A.M. and Mashat, D.S. (2010), "Thermal buckling analysis of ceramic-metal functionally graded plates", Nat. Sci, 2, 968-978.
  32. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerospace Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. On buckling and free vibration studies of sandwich plates and cylindrical shells pp.1530-7980, 2018, https://doi.org/10.1177/0892705718809810
  2. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  3. Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage vol.6, pp.3, 2016, https://doi.org/10.12989/amr.2017.6.3.257
  4. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
  5. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
  6. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  7. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
  8. Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate vol.7, pp.1, 2018, https://doi.org/10.12989/amr.2018.7.1.029
  9. Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility vol.66, pp.1, 2018, https://doi.org/10.12989/sem.2018.66.1.085
  10. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.519
  11. Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads vol.15, pp.2, 2016, https://doi.org/10.12989/eas.2018.15.2.113
  12. Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.269
  13. Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2016, https://doi.org/10.12989/eas.2019.16.5.601
  14. Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
  15. Flexural behaviour of steel beams reinforced by carbon fibre reinforced polymer: Experimental and numerical study vol.72, pp.4, 2019, https://doi.org/10.12989/sem.2019.72.4.409
  16. Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model vol.33, pp.6, 2016, https://doi.org/10.12989/scs.2019.33.6.805
  17. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2016, https://doi.org/10.12989/sss.2020.25.4.409
  18. Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM vol.75, pp.5, 2020, https://doi.org/10.12989/sem.2020.75.5.633
  19. Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation vol.9, pp.6, 2016, https://doi.org/10.12989/csm.2020.9.6.499
  20. Modal analysis of cylindrical panels at elevated temperatures under nonuniform heating conditions: Experimental investigation vol.235, pp.5, 2021, https://doi.org/10.1177/0954406220936738
  21. Modeling and analysis of the imperfect FGM-damaged RC hybrid beams vol.6, pp.2, 2016, https://doi.org/10.12989/acd.2021.6.2.117
  22. New solution for damaged porous RC cantilever beams strengthening by composite plate vol.10, pp.3, 2016, https://doi.org/10.12989/amr.2021.10.3.169