• Title/Summary/Keyword: non-transgenic cultivation rice

Search Result 7, Processing Time 0.038 seconds

Effects of Protox Herbicide Tolerance Rice Cultivation on Microbial Community in Paddy Soil (Protox 제초제저항성 벼 재배가 토양미생물 군집에 미치는 영향)

  • Oh, Sung-Dug;Ahn, Byung-Ohg;Kim, Min-Kyeong;Sohn, Soo-In;Ryu, Tae-Hun;Cho, Hyun-Suk;Kim, Chang-Gi;Back, Kyoung-Whan;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • BACKGROUND: Rice (Oryza sativa) is the most important staple food of over half the world's population. This study was conducted to evaluate the possible impact of transgenic rice cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM rice cultivation soils. Microbial community was identified based on the culture-dependent and molecular biology methods. The total numbers of bacteria, fungi, and actinomycete in the rhizosphere soils cultivated with GM and non-GM rice were similar to each other, and there was no significant difference between GM and non-GM rice. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM rice were Actinobacteria, Firmicutes, and Proteobacteria. The microbial communities in GM and non-GM rice cultivated soils were characterized using the denaturing gradient gel electrophoresis (DGGE). The DGGE profiles showed similar patterns, but didn't show significant difference to each other. DNAs were isolated from soils cultivating GM and non-GM rice and analyzed for persistence of inserted gene in the soil by using PCR. The PCR analysis revealed that there were no amplified protox gene in soil DNA. CONCLUSION(S): These data suggest that transgenic rice does not have a significant impact on soil microbial communities, although continued research may be necessary.

Molecular Analysis of Bacterial Community Structures in Paddy Soils for Environmental Risk Assessment with Two Varieties of Genetically Modified Rice, Iksan 483 and Milyang 204

  • Kim, Min-Cheol;Ahn, Jae-Hyung;Shin, Hye-Chul;Kim, Tae-Sung;Ryu, Tae-Hun;Kim, Dong-Hern;Song, Hong-Gyu;Lee, Geon-Hyoung;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.207-218
    • /
    • 2008
  • The impacts of planted transgenic rice varieties on bacterial communities in paddy soils were monitored using both cultivation and molecular methods. The rice field plot consisted of eighteen subplots planted with two genetically modified (GM) rice and four non-GM rice plants in three replicates. Analysis with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes revealed that the bacterial community structures were quite similar to each other in a given month, suggesting that there were no significant differences in bacterial communities between GM and non-GM rice soils. The bacterial community structures appeared to be generally stable with the seasons, as shown by a slight variation of microbial population levels and DGGE banding patterns over the year. Comparison analysis of 16S rDNA clone libraries constructed from soil bacterial DNA showed that there were no significant differences between GM and non-GM soil libraries but revealed seasonal differences of phyla distribution between August and December. The composition profile of phospholipid fatty acids (PLFA) between GM and non-GM soils also was not significantly different to each other. When soil DNAs were analyzed with PCR by using primers for the bar gene, which was introduced into GM rice, positive DNA bands were found in October and December soils. However, no bar gene sequence was detected in PCR analysis with DNAs extracted from both cultured and uncultured soil bacterial fractions. The result of this study suggested that, in spite of seasonal variations of bacterial communities and persistence of the bar gene, the bacterial communities of the experimental rice field were not significantly affected by cultivation of GM rice varieties.

Effects of CaMSRB2-Expressing Transgenic Rice Cultivation on Soil Microbial Communities

  • Sohn, Soo-In;Oh, Young-Ju;Kim, Byung-Yong;Cho, Hyun-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1303-1310
    • /
    • 2016
  • Although many studies on the effects of genetically modified (GM) crops on soil microorganisms have been carried out over the past decades, they have provided contradictory information, even for the same GM crop, owing to the diversity of the soil environments in which they were conducted. This inconsistency in results suggests that the effects of GM crops on soil microorganisms should be considered from many aspects. In this study, we investigated the effects of the GM drought-tolerant rice MSRB2-Bar-8, which expresses the CaMSRB2 gene, on soil microorganisms based on the culture-dependent and culture-independent methods. To this end, rhizosphere soils of GM and non-GM (IM) rice were analyzed for soil chemistry, population densities of soil microorganisms, and microbial community structure (using pyrosequencing technology) at three growth stages (seedling, tillering, and maturity). There was no significant difference in the soil chemistry between GM and non-GM rice. The microbial densities of the GM soils were found to be within the range of those of the non-GM rice. In the pyrosequencing analyses, Proteobacteria and Chloroflexi were dominant at the seedling stage, while Chloroflexi showed dominance over Proteobacteria at the maturity stage in both the GM and non-GM soils. An UPGMA dendrogram showed that the soil microbial communities were clustered by growth stage. Taken together, the results from this study suggest that the effects of MSRB2-Bar-8 cultivation on soil microorganisms are not significant.

Comparison of Insect Fauna in Transgenic and Common Rice Paddy Fields (형질전환 벼와 일반 벼간 곤충상 비교)

  • Park, Taechul;Choe, Hojeong;Jeong, Hyoujin;Jang, Hojung;Kim, Jukon;Park, Jung-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.488-497
    • /
    • 2018
  • Quantitative classification of insect fauna in transgenic rice in 2 LMO(Living genetically Modified Organism) isolated paddy fields (Gyeongsang National University, Gyeongbuk National University) and rice in 4 paddy fields(Duryang 1, Duryang 2, Hwagye 1, Hwagye 2), were evaluated for consecutive 5 years (2013 to 2017) in Sacheon, Gyeongnam province, and for 2 consecutive years (2015 to 2016) in Gunwi Gyeongbuk province. Sampling insect fauna were evaluated by black light trapping, sticky trapping, visual surveying, and sweeping methods in each target paddy field, respectively. A total of 37,941 individuals, of 464 species from 15 orders, were collected in Sacheon for 5 years. A total of 10,030 individuals, of 366 species from 13 orders, were collected in Gunwi for 2 years. Based on results of comparison between transgenic and non-transgenic paddy fields for 5 consecutive years, the similarity index between LMO paddy field and common paddy field is not different. Thus, this difference is not due to the environment, not the LMO.

Effects of insect-resistant genetically modified rice (Bt-9) cultivation on non-target insect diversity

  • Oh, Sung-Dug;Lim, Myung-Ho;Lee, Bumkyu;Yun, Doh-Won;Sohn, Soo-In;Chang, Ancheol;Park, Soon Ki;Suh, Sang Jae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • This study was done to develop environmental risk assessments and a biosafety guide for insect-resistant genetically modified rice at a LMO (Living Modified Organism) isolation field. In the LMO quarantine area of Kyungpook National University, the species diversities and population densities of non-target insects found on insect-resistant genetically modified rice (Bt-9) resistant to Cnaphalocrocis medinalis and on non-GM rices (Dongjin and Ilmi) were investigated. The Bt-9 event was therefore evaluated under field conditions to detect possible impacts on the above ground insects and spiders. The study compared transgenic rice and two non-GM reference rices, Ilmi and Dongjin, at Gunwi in Southern Korea in 2016. Each rice was grown on three $18m^2$ plots with a randomized block design. A total of 4,243 individuals from 43 families and 9 orders were collected from the LMO isolation field. In the three types of rice fields, a total of 1,467 individuals from the insect-resistant genetically modified rice (Bt-9), 1,423 individuals from the Ilmi, and 1,353 individuals from the Dongjin were collected, respectively. There was no difference between the population densities of the non-target insect pests, natural enemies and other insects on the insect-resistant genetically modified rice (Bt-9) and non-GM rices. These results provide the diversity and population density of non-target insects for an environment risk assessment survey on insect-resistant genetically modified rice and could be used as a guideline to make a biosafety assessment method for genetically modified crops.

Temporal and Spatial Characteristics in the Pollen Flow of Living Modified Rice (유전자변형 벼로부터 일어나는 화분비산의 시공간적 특성)

  • An, Joo-Hee;Cho, Kang-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.210-217
    • /
    • 2009
  • Pollen flow is one of the essential components in the ecological risk assessment of transgenic crops, because pollen can act as a vehicle to disseminate transferred alien genes. Pollen flow pattern of a cultivated rice variety and Living modified (LM) rice was studied at diurnal and distance changes under field. We measured airborne pollen density at the distances of -1, 0.5, 0, 1, 2, 3, 4, 5, 7, 9, 11 and 13 m from rice cultivation and recorded the direction and speed of wind using weather station in the conventional rice paddy field during the flowering period of rice. Diurnal changes in pollen density were observed as a peak between 10:00 to 13:00 hr. The density of airborne rice pollen geometrically decreased with the increase of distance from pollen sources. It is therefore necessary to carry out a detailed investigation of pollen flow of a particular species, where ecological risk assessment requires an accurate estimation of pollen flow including both distance and intensity of pollen dispersal. The rice pollen flow was significantly influenced by weather conditions, particularly by wind direction and speed. The precise determination of the local wind conditions at flowering time therefore appears to be of primary importance for setting up suitable isolation distance from transgenic rice in the field.

Influences of Insect-Resistant Genetically Modified Rice (Bt-T) on the Diversity of Non-Target Insects in an LMO Quarantine Field (LMO 격리 포장에서 해충저항성벼(Bt-T)가 비표적 곤충다양성에 미치는 영향)

  • Oh, Sung-Dug;Park, Soo-Yun;Chang, Ancheol;Lim, Myung-ho;Park, Soon Ki;Suh, Sang Jae
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.406-414
    • /
    • 2018
  • This study was conducted to develop environmental risk assessments and biosafety guides for insect-resistant genetically modified rice in an LMO (Living Modified Organism) isolation field. In the LMO quarantine area of Kyungpook National University, the species diversities and population densities of non-target insects found on insect-resistant genetically modified rice (Bt-T), rice resistant to Cnaphalocrocis medinalis, and non-GM rice (Dongjin-byeo and Ilmi-byeo) were investigated. The Bt-T plants were, therefore, evaluated under field conditions to detect possible impacts on above ground insects and spiders. In 2016 and 2017, the study compared transgenic rice and two non-GM reference rice, namely Dongjin-byeo and Ilmi-byeo, at Gunwi. A total of 9,552 individuals from 51 families and 11 orders were collected from the LMO isolation field. From the three types of rice fields, a total of 3,042; 3,212; and 3,297 individuals from the Bt-T, Dongjin-byeo, and Ilmi-byeo were collected, respectively. There was no difference between the population densities of the non-target insect pests, natural enemies, and other insects on the Bt-T compared to non-GM rice. The data on insect species population densities were subjected to principal component analysis (PCA) without distinguishing between the three varieties, namely GM, non-GM, and reference cultivar, in all cultivation years. However, the PCA clearly separated the samples based on the cultivation years. These results suggest that insect species diversities and population densities during plant cultivation are determined by environmental factors (growing condition and seasons) rather than by genetic factors.