Browse > Article

Temporal and Spatial Characteristics in the Pollen Flow of Living Modified Rice  

An, Joo-Hee (Inha University)
Cho, Kang-Hyun (Inha University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.54, no.2, 2009 , pp. 210-217 More about this Journal
Abstract
Pollen flow is one of the essential components in the ecological risk assessment of transgenic crops, because pollen can act as a vehicle to disseminate transferred alien genes. Pollen flow pattern of a cultivated rice variety and Living modified (LM) rice was studied at diurnal and distance changes under field. We measured airborne pollen density at the distances of -1, 0.5, 0, 1, 2, 3, 4, 5, 7, 9, 11 and 13 m from rice cultivation and recorded the direction and speed of wind using weather station in the conventional rice paddy field during the flowering period of rice. Diurnal changes in pollen density were observed as a peak between 10:00 to 13:00 hr. The density of airborne rice pollen geometrically decreased with the increase of distance from pollen sources. It is therefore necessary to carry out a detailed investigation of pollen flow of a particular species, where ecological risk assessment requires an accurate estimation of pollen flow including both distance and intensity of pollen dispersal. The rice pollen flow was significantly influenced by weather conditions, particularly by wind direction and speed. The precise determination of the local wind conditions at flowering time therefore appears to be of primary importance for setting up suitable isolation distance from transgenic rice in the field.
Keywords
gene flow; pollen; rice; Oriza sativa; risk assessment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 2000-2004 국내 각 연구기관의 보고서 및 연구논문집 조사 결과. 2005. 농업생명공학연구원
2 이은웅 등 1994. 수도작. 향문사. pp. 82-84
3 Amand, P. C., D. Z. Skinner, and R. N. Praden. 2000. Risk of alfalfa transgene dissemination and scale-dependent effects. Theoretical and Applied Genetics 101 : 107-114   DOI   ScienceOn
4 Giddings, G. D., N. R. Sackville Hamilton, and M. D. Hayward. 1997a. The release of genetically modified grasses. Part 1: pollen dispersal to traps in Lolium perenne. Theoretical and Applied Genetics 94 : 1000-1006   DOI   ScienceOn
5 James, C. 2007. Global Status of Commercialized Biltech/GM Crops: 2007. ISAAA Brief No. 37. ISAAA: Ithaca, NY
6 Jackson, S. T. and M. E. Lyford. 1999. Pollen dispersal models in quarternary plant ecology: assumptions, parameters and prescriptions. The Botanical Review 65(1) : 39-75   DOI   ScienceOn
7 Messeguer, J., C. Fogher, E. Guiderdoni, V. Marra, M. M. Catala, G. Baldi, and E. Mele. 2001. Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theoretical and Applied Genetics 103 : 1151-1159   DOI   ScienceOn
8 Messeguer, J., V. Marfa, M. M. Catalo, E. Guiderdoni, and E. Mele, 2004. A field study of pollen-mediated gene now from Mediterranean GM rice to conventional rice and the rice weed. Molecular Breeding 13 : 103-112   DOI   ScienceOn
9 Snow, A. A. and P. M. Moran-Palma. 1997. Commercialization of transgenic plants: potential ecological risks. BioScience. 47 : 86-96   DOI   ScienceOn
10 Stewart, C. N., M. D. Halfhill, and S. J. Warwick. 2003. Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics 4 : 806-817   DOI   ScienceOn
11 Walklate, P. J., J. C. R. Hunt, H. L. Higson, and J. B. Sweet. 2004. A model of pollen-mediated gene flow for oilseed rape. Proceedings of the Royal Society of London, Series B-Biological Sciences 271 : 441-447   DOI   ScienceOn
12 바이오안전성백서. 2008. 한국생명공학연구원 바이오안전성보센터, 대전. pp. 202-216
13 Bao-Rong, L. and A. S. Allison. 2005. Gene flow from genetically modified rice and its environmental consequences. BioScience. 55(8) : 669-678   DOI   ScienceOn
14 Giddings, G. D., N. R. Sackville Hamilton, and M. D. Hayward. 1997b. The release of genetically modified grasses. Part 2: the influence of wind direction on pollen dispersal. Theoretical and Applied Genetics 94 : 1007-1014   DOI   ScienceOn
15 Gealy, D. R., D. H. Mitten, and J. N. Rutger. 2003. Gene flow between red rice (Oriza sativa) and herbicide-resistant rice (Oriza sativa) : Implications for weed management weed. Weed Technology 17 : 627-645   DOI   ScienceOn
16 Gray, A. J. and A. F. Raybould. 1998. Crop genetics: Reducin transgene escape routes. Nature 392 : 653-654   DOI   ScienceOn
17 Jang, I. C., S. J. Oh, J. S. Seo, W. B. Choi, S. I. Song, C. H. Kim, Y. S. Kim, H. S. Seo, Y. D. Choi, B. H. Nahm, and J. K. Kim. 2003. Expression of a Bifunctional Fusion of the Escherichia coli Genes for Trehalose-6-Phosphate Synthase and Trehalose-6-Phosphate Phosphatase in Transgenic Rice Plants Increases Trehalose Accumulation and Abiotic Stress Tolerance without Stunting Growth. Plant Physiology. 131 : 516-524   DOI   ScienceOn
18 Odd, Arne Rognli, Nils-Otto Nilsson, and Minna Nurminiemi, 2000. Effects of distance and pollen competition on gene now in the wind-pollinated grass Festuca pratensis Huds. Hefedity 85: 550-560   DOI   ScienceOn
19 Rong, Jun, Bao-Rong Lu, Zhiping song, Jun Su, Allison A. Snow, Xinsheng Zhang, Shuguang Sun, Rui Chen, and Feng Wang. 2007. Dranatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytologist 173 : 346-353   DOI   ScienceOn
20 Y. Sana. 1989. The direction of pollen flow between two co-occurring rice species, Oryza sativa and O. glaberrima. Hededity 63 : 353-357   DOI
21 Song, Z., B. R. Lu, Y. G. Zhu, and J. K. Chen. 2003. Gene now from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytologist 157 : 657-665   DOI   ScienceOn
22 Song, Z., B. R. Lu, and J. Chen. 2004. Pollen flow of cultivated rice measured under experimental conditions. Biodiversity and conservation 13 : 579-590   DOI   ScienceOn
23 손종구, 김기일, 조성관. 2005. 유전자변형작물(국제무역마찰 및 다국적기업전략에 대한 대응방안). BA 409. 한국과학기술정보연구원
24 Chen, Li Juan, Dong sun Lee, Zhiping Song, Hak Soo Suh, and Bao-Rong Lu. 2004. Gene now from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany 93 : 67-73   DOI   ScienceOn
25 Paloma, Carijjanos, Carmen Galan, Purifkcacion Alcazar, and Eugenio Dominguez, 2004. Airborne pollen records response to climatic conditions in arid areas of the Iberian Peninsula. Environmental and Experimental Botany 52: 11-22   DOI   ScienceOn
26 Philip, J. D., C. Belinda, and M. G. Eliana. Fontes. 2002. Potential for the environmental impact of transgenic crops. Nature biotechnology 20 : 567-574   DOI   PUBMED   ScienceOn
27 Timmons, A. M., E. T. O'Brien, Y. M. Charters, S. J. Dubbels, and M. J. Wilkinson. 1995. Assessing the risks of wind pollination from field of genetically modified Brassica napus ssp. oleifera. Euphytica 85 : 417-423   DOI   ScienceOn
28 Martin, H. and E. C. James. 2007. The effect of wind direction on cross-pollination in wind-pollinated GM crops. Ecological Applications. 17(4) : 1234-1243   DOI   ScienceOn
29 Dafini, A. and D. Firmage. 2000. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant systematics and Evolution. 222 : 113-132   DOI   ScienceOn