• 제목/요약/키워드: non-thermal plasma

Search Result 232, Processing Time 0.025 seconds

High Concentrated Toluene Decomposition by Non-thermal Plasma-Photocatalytic (Mn-Ti-MCM-41) Hybrid System (상온 방전 플라즈마-광촉매(Mn-Ti-MCM-41) 복합 시스템에 놓인 고농도 톨루엔의 분해성능)

  • Ban, Ji-Young;Son, Yeon-Hee;Lee, Sung-Chul;Kang, Misook;Choung, Suk-Jin;Sung, Joon-Yong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.413-421
    • /
    • 2005
  • This study focused on the decomposition of toluene in a plasma-photocatalytic hybrid system. Hexagonally packed meso-structured Mn-titanosilicates (Mn-Ti-MCM-41), as the photocatalysts, have been prepared by the hydrothermal method. The physical properties of the photocatalysts were characterized using XRD, XPS, TEM, BET/ICP, and $NH_3$/Toluene-TPD. Experiments were carried out at the applied voltage of 9.0 kV and at room temperature of $20^{\circ}C$. In the plasma only system, the activity of the toluene decomposition was higher than that in the photocatalytic system. However, the amount of by-products, such as phenol, $C_2{\sim}C_4$ alkene, was also increased in the plasma only system. However, the by-products decreased remarkably in a plasma-photocatalytic hybrid system. When Mn5mol%-Ti-MCM-41 was used as a photocatalyst in a plasma-photocatalytic hybrid system, the $CO_2$ selectivity in products was increased dramatically compared to other catalysts. It was confirmed that a plasma-photocatalytic hybrid system was better for toluene decomposition compared to photocatalytic and plasma only systems.

Nickel Film Deposition Using Plasma Assisted ALD Equipment and Effect of Nickel Silicide Formation with Ti Capping Layer (Plasma Assisted ALD 장비를 이용한 니켈 박막 증착과 Ti 캡핑 레이어에 의한 니켈 실리사이드 형성 효과)

  • Yun, Sang-Won;Lee, Woo-Young;Yang, Chung-Mo;Ha, Jong-Bong;Na, Kyoung-Il;Cho, Hyun-Ick;Nam, Ki-Hong;Seo, Hwa-Il;Lee, Jung-Hee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.19-23
    • /
    • 2007
  • The NiSi is very promising candidate for the metallization in 45 nm CMOS process such as FUSI(fully silicided) gate and source/drain contact because it exhibits non-size dependent resistance, low silicon consumption and mid-gap workfunction. Ni film was first deposited by using ALD (atomic layer deposition) technique with Bis-Ni precursor and $H_2$ reactant gas at $220^{\circ}C$ with deposition rate of $1.25\;{\AA}/cycle$. The as-deposited Ni film exhibited a sheet resistance of $5\;{\Omega}/{\square}$. RTP (repaid thermal process) was then performed by varying temperature from $400^{\circ}C$ to $900^{\circ}C$ in $N_2$ ambient for the formation of NiSi. The process temperature window for the formation of low-resistance NiSi was estimated from $600^{\circ}C$ to $800^{\circ}C$ and from $700^{\circ}C$ to $800^{\circ}C$ with and without Ti capping layer. The respective sheet resistance of the films was changed to $2.5\;{\Omega}/{\square}$ and $3\;{\Omega}/{\square}$ after silicidation. This is because Ti capping layer increases reaction between Ni and Si and suppresses the oxidation and impurity incorporation into Ni film during silicidation process. The NiSi films were treated by additional thermal stress in a resistively heated furnace for test of thermal stability, showing that the film heat-treated at $800^{\circ}C$ was more stable than that at $700^{\circ}C$ due to better crystallinity.

  • PDF

Experimental analysis on the characteristics of enthalpy probe immersed in arc plasma flow (아크 플라즈마 유동에 삽입된 엔탈피 탐침의 동작특성 실험)

  • Seo, Jun-Ho;Nam, Jun-Seok;Choi, Seong-Man;Hong, Bong-Gun;Hong, Sang-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1240-1246
    • /
    • 2010
  • Enthalpy probe with the inner and outer diameters of 1.5 mm and 4.8 mm, respectively, is designed and used to measure the temperatures and velocities along the centerline of Ar arc plasma flow until the probe was destroyed. For this purpose, Ar arc plasma flow is generated by non-transferred type DC arc heater with the power level of 17 kW. From this experiment, it is shown that the designed enthalpy probe can measure the temperature and velocity of arc plasma flow up to 12,000 K and 600 m/s, respectively, without destroy of probe tip. In this extreme case, the arc plasma flow is calculated to transfer the heat flux of ${\sim}5{\times}10^7\;W/m^2$ to the probe based on the heat and thermal boundary equations near the forward stagnation point of a body immersed in arc plasma flow. Consequently, the designed enthalpy probe can measure the wide ranges of plasma temperatures, velocities and concentrations simultaneously, which are generated by various types of arc heaters within the heat flux ranges of $0{\sim}5{\times}10^7\;W/m^2$ on the probe tip.

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.111-121
    • /
    • 2003
  • In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.

Representation of fundamental solution and vibration of waves in photothermoelastic under MGTE model

  • Rajneesh Kumar;Nidhi Sharma;Supriya Chopra;Anil K. Vashishth
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.123-146
    • /
    • 2023
  • In this paper, Moore-Gibson-Thompson theory of thermoelasticity is considered to investigate the fundamental solution and vibration of plane wave in an isotropic photothermoelastic solid. The governing equations are made dimensionless for further investigation. The dimensionless equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature distribution and carrier density distribution). Fundamental solutions are constructed for the system of equations for steady oscillation. Also some preliminary properties of the solution are explored. In the second part, the vibration of plane waves are examined by expressing the governing equation for two dimensional case. It is found that for the non-trivial solution of the equation yield that there exist three longitudinal waves which advance with the distinct speed, and one transverse wave which is free from thermal and carrier density response. The impact of various models (i)Moore-Gibson-Thomson thermoelastic (MGTE)(2019), (ii) Lord and Shulman's (LS)(1967) , (iii) Green and Naghdi type-II(GN-II)(1993) and (iv) Green and Naghdi type-III(GN-III)(1992) on the attributes of waves i.e., phase velocity, attenuation coefficient, specific loss and penetration depth are elaborated by plotting various figures of physical quantities. Various particular cases of interest are also deduced from the present investigations. The results obtained can be used to delineate various semiconductor elements during the coupled thermal, plasma and elastic wave and also find the application in the material and engineering sciences.

The fluoride application using low frequency non-thermal plasma jet

  • Lee, Hyeon-Yeong;Dang, Cheon-U;Kim, Yeong-Min;Kim, Dong-Hyeon;Lee, Ho-Jun;Lee, Hae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.228.1-228.1
    • /
    • 2016
  • 기존 산업에서 많이 쓰여져오고 있는 저압 플라즈마에 비해 여러가지 장점을 지닌 대기압 플라즈마는 수년 전부터 많은 연구가 되어 왔으며 폭넓은 응용분야에 있어서 활발히 이용되고 있고, 특히 온도가 거의 상온과 비슷하다는 장점으로 대기압 저온 플라즈마는 바이오메디컬 분야에서 활발하게 응용되어지고 있다. 본 연구에서는 대기압 저온 플라즈마 젯 장치를 사용하여 치아 표면에 불소를 도포하고 법랑질 표면의 불소 원소를 검출함으로써 플라즈마가 치아표면 불소도포에 있어서 어떠한 효과가 있는지 정량적으로 비교분석하였다. 또한 대기압 플라즈마 젯 장치의 방전개시전압과 가스유량에 따른 플라즈마젯 길이의 변화 및 OES(Optical Emission Spectroscopy) 장치를 사용하여 플라즈마에 대한 광학적 진단을 진행하였다. 치아표면에서 검출된 불소량은 플라즈마를 사용했을때가 그렇지 않을때에 비해 더 높게 관찰 되었다.

  • PDF

A Study on The Reaction Characteristics of Desulfurization and Denitrification in Non-Thermal Plasma Conditions (저온 플라즈마 조건에서 탈황.탈질 반응 특성 연구)

  • 신대현;우제경;김상국;백현창;박영성;조정국
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.150-158
    • /
    • 1999
  • 본 연구는 저온플라즈마를 이용하여 배기가스중의 SOx와 NOx를 동시에 처리하는 공정을 개발하는 것으로서, 최적의 반응제 선정과 효율적인 공정의 구성을 위해 SOx, NOx와 반응제와 반응기구를 밝히고자 하였다. 실험은 1.0 N㎥/h의 모사가스를 이용한 기초실험과 20 N㎥/h의 실제 연소가스를 이용한 실험으로 진행되었으며, 반응제로는 NH3와 파리핀계 및 올레핀계 탄화수소를 사용하였다. NH3를 반응제로 한 SO2 제거반응은 비플라즈마 조건에서는 NH4HSO3, 플라즈마 조건에서는 (NH4)2SO4의 생성반응이었고, 두 조건 모두 높은 제거율을 나타냈다. 반응제를 사용하지 않은 플라즈마 조건에서 SO2는 환원반응이 일어나고 O2 농도의 증가는 역반응을 증가시키는 화학평형에 의해 SO2의 제거율이 감소되었다. 플라즈마 조건에서 NO는 O2농도가 낮은 경우는 NO의 환원반응이 주로 일어나고, O2 농도가 높을 경우는 산화반응이 지배적이었다. 올레핀계 탄화수소는 플라즈마 조건에서 NO 산화 반응에 탁월한 효과를 보였을 뿐만 아니라 SO2 제거에도 효과를 보여 최대 40%의 제거율을 나타냈으며, NH3의 사용을 줄일 수 있음을 확인하였다.

  • PDF

The DeNOx, DeSOx system using Non-thermal plasma (저온 플라즈마를 이용한 탈황탈질용 시스템)

  • Kim, Soo-Hong;Moon, Sang-Ho;Han, Byung-Wook;Lee, Jeung-Hum;Kwon, Byung-Ki;Choi, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.15-17
    • /
    • 2008
  • 저온 플라즈마를 이용한 탈황탈질 시스템은 한 개의 반응기에서 오염물질을 동시에 제거함으로써 설비가 매우 compact하고 운전비가 저렴한 장점을 가지고 있다. 본 논문은 펄스 고전압 방전에 의한 저온플라즈마를 이용하여 Sox, Nox동시 제거를 위한 전원장치의 회로 구성과 전원장치의 동작특성을 설명하였다. 그리고 당사의 탈황탈질 시스템 기술현황 및 향후계획을 논의하였다.

  • PDF

Fabrication of Mesoporous Hollow TiO2 Microcapsules for Application as a DNA Separator

  • Jeon, Sang Gweon;Yang, Jin Young;Park, Keun Woo;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3583-3589
    • /
    • 2014
  • This study evaluated a simple and useful route to the synthesis of mesoporous $TiO_2$ microcapsules with a hollow macro-core structure. A hydrophilic precursor sol containing the surfactants in the hydrophobic solvents was deposited on PMMA polymer surfaces modified by non-thermal plasma to produce mesoporous shells after calcination. The surface of the PMMA polymer spheres was coated with $NH_4F$ and CTAB to control the interfacial properties and promote the subsequent deposition of inorganic sols. These hollow type mesoporous $TiO_2$ microcapsules could be applied as an efficient substrate for the immobilization of DNA oligonucleotides.