• Title/Summary/Keyword: non-submerged

Search Result 174, Processing Time 0.025 seconds

Transformation of Irregular Waves due to Rectangular Submerged Non-porous Breakwaters (사각형형상 불투과성 수증방파제에 의한 불규칙파의 변형)

  • Hwang, Jong-Kil;Lee, Seung-Hyeob;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.949-958
    • /
    • 2004
  • A combined experimental and numerical effort is presented for investigation of reflection of irregular waves due to rectangular submerged breakwaters. In the numerical model, the Reynolds equations are solved by a finite difference method and k-$\varepsilon$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. Numerical predictions of transmission and reflection coefficients are verified by comparing to laboratory measurements. Very reasonable agreements are observed. The reflection coefficients become stronger in proportion to numbers of submerged breakwaters.

Numerical Simulation on Reduced Runup Height of Solitary Wave by Fixed Submerged and Floating Rectangular Obstacles (고정된 사각형 수중 및 부유식 구조물에 의한 고립파의 처오름높이 저감 수치모의)

  • Choong Hun, Shin;Hyung Suk, Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.211-221
    • /
    • 2022
  • The wave runup height is one of the most important parameters for affecting the design of coastal structures such as dikes, revetments, and breakwaters. In this study, SWASH (Zijlema et al., 2011), a non-hydrostatic pressure numerical model, was used to analyze the effect of reducing The wave runup height of solitary waves by submerged and floating rectangular obstacles. It was confirmed that the SWASH model reproduces the propagation, breaking, and runup of solitary waves quite well. In addition, it was confirmed that the wave deformation of the solitary wave by submerged and floating rectangular obstacles was well reproduced. Finally, we conducted an examination of the effect of reducing the runup height of submerged and floating rectangular obstacles. Reduced runup heights are calculated and the characteristics of runup height reduction according to the dimensions of the obstacle were analyzed. The energy attenuation effect of the floating obstacle is greater than the submerged obstacle, and it is shown to be more effective in reducing the runup height.

Non-submerged type implant stability analysis during initial healing period by resonance frequency analysis (Resonance frequency analysis를 이용한 non-submerged type 임플란트의 초기 안정성 분석)

  • Kim, Deug-Han;Pang, Eun-Kyoung;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.3
    • /
    • pp.339-348
    • /
    • 2009
  • Purpose: The purpose of the present study was to analyze the implant stability quotient(ISQ) values for Korean non-submerged type implant and determine the factors that affect implant stability. Methods: A total of 49 Korean non-submerged type implants were installed in 24 patients, and their stability was measured by resonance frequency analysis(RFA) at the time of surgery, and 1, 2, 3, 4, 8, 12 weeks postoperatively. The data for implant site, age, sex, implant length and diameter, graft performing, bone type, and insertion torque were analyzed. Results: The lowest mean stability measurement was at 3 weeks. There was significant difference between implant placement and 12 weeks. There was significant difference between implant placement and 12 weeks in diameters of 4.1 mm and 4.8 mm. Also, there were significant differences between diameters of 4.1 mm and 4.8 mm at implant placement and 12 weeks after surgery. This result suggests that the factor related to implant diameter may affect the level of implant stability. No statistically significant relationship was found between the resonance frequency analysis and the variables of maxilla/mandible, sex, anterior/posterior, implant length, age of patient, graft performing, bone type, insertion torque during initial healing period. Conclusions: These findings suggest that the factor related to implant diameter may affect the variance of implant stability, and ISQ value of implant was stable enough for proved stability level during initial healing period.

3D Characteristics of Dynamic Response of Seabed around Submerged Breakwater Due to Wave Loading (파랑하중에 의한 잠제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • We analyzed the 3-D characteristics of the dynamic response of seabed around a submerged breakwater due to wave loading using a 3-D numerical scheme (LES-WASS-3D). Using our model, which considers the wave-structure-sandy seabed interactions in a 3-D wave field, we were able to investigate the 3-D characteristics of the pore-water pressure in the seabed around the submerged breakwater under various incident wave conditions. To verify the 3-D numerical analysis method suggested in this study, we compared the numerical results with the existing experimental results and found good agreement between them. The numerical analysis reveals that high pore-water pressure in the seabed is generated below a large wave height at the front slope of the submerged breakwater. It was also shown that the non-dimensional pore-water pressure in the seabed increases as the wave period increases because the wave energy dissipation decreases on the submerged breakwater and seabed as the wave period increases.

Reflection of Random Waves Propagating over Rectangular Submerged Non-Porous Breakwaters (사각형형상 불투과성 수중방파제를 통과하는 불규칙파의 반사)

  • Jung, Jae-Sang;Cho, Dae-Hee;Hwang, Jong-Kil;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.729-736
    • /
    • 2004
  • Analysis of reflection of random waves propagating over rectangular submerged non-porous breakwaters was performed by using the eigenfunction expansion method. In this study, random waves were generated by superposition of several monochromatioc waves. Reflection coefficients were calculated by summing each numerical results of regular waves. Predicted results from the eigenfunction expansion method were in a good agreement with the results of laboratory measurements. Reflection coefficients of random waves were also resonated at the Bragg reflection condition.

A Study of the Wave Control Characteristics of the Permeable Submerged Breakwater using VOF Method in Irregular Wave Fields (불규칙파동장에 있어서 VOF법에 의한 투과성잠제의 파랑제어 특성에 관한 연구)

  • Kim Do Sam;Lee Kwang Ho;Yoo Hyun Sang;Kim Chang Hoon;Son Byoung Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.121-129
    • /
    • 2004
  • The different types of coastal souctures have been constructed for the protection of coastal region from the incident waves. Among them. the permeable submerged breakwater has been widely used as a wave dissipater and sediment transport controller because of its excellent advantages in scenery effects, construction efficiency and environment aspects. This study numerically investigated the characteristics of wave energy variations and transmission coefficient at the rear of the permeable submerged breakwater installed in the irregular wave field. To analyze it's performance numerically, a two-dimensional numerical wave flume based on VOF method was used. A frequency spectral analysis showed that the spectral peak moved to the short-period in the one-row submerged breakwater, and the wave energy was distributed evenly for the whole period in the two-row submerged breakwater in the case of breaking on the submerged breakwater. The spectral peak was shown to be converged within the significant wave period at the rear of the permeable submerged breakwater in the case of non-breaking conditions. From the result of transmission coefficients analysis. it was confirmed that a considerable quantity of wave energy was transmitted to the rear of the permeable submerged breakwater in the case of non-breaking rather than breaking.

A numerical study on the suction performance of a submerged cargo pump (수중 카고 펌프의 흡입성능에 관한 수치해석적 연구)

  • Kim, Joon-Hyung;Choi, Young-Seok;Lee, Kyoung-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.18-23
    • /
    • 2008
  • In this paper, effects of inlet shape on the performance of a submerged cargo pump were numerically studied using a commercial CFD code ANSYS-CFX. The inlet shape, especially the gap between pump and suction well, is an important parameter in a point of view of performances of submerged cargo pump due to its effects on the residual and also hydraulic performance of the pump, respectively. To investigate the optimized gap, the overall performance degradations were calculated with the gap. In addition to that, the flow field through the gap was investigated to explain the effect of velocity non-uniformity on the performance of the pump impeller.

Effects of inlet shape on the performance of a submerged cargo pump (입구부 형상이 수중 카고 펌프의 성능에 미치는 영향)

  • Kim, Joon-Hyung;Choi, Young-Seok;Lee, Kyoung-Yong;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.44-49
    • /
    • 2007
  • In this paper, effects of inlet shape on the performance of a submerged cargo pump were numerically studied using a commercial CFD code CFX. The inlet shape, especially the gap between pump and suction well, is an important parameter in a point of view of performances of submerged cargo pump due to its effects on the residual and also hydraulic performance of the pump, respectively. To know the optimized gap, the overall performance degradations were calculated with the gap. In addition to that, the flow field through the gap was investigated to explain the effect of velocity non-uniformity on the performance of the pump impeller.

Studies on the Leaching Constituent of Submerged Soil -I. Effects of Potassium Salts on Leaching of Minerals in Submerged Soil (논 토양성분(土壤成分)의 용탈(溶脫)에 관(関)한 연구(硏究) -I. 논 토양성분(土壤成分)의 용탈(容脫)에 미치는 가리염(加里塩)의 영향(影響))

  • Kim, Kwang-Sik;Kim, Yong-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 1983
  • These studies were carried out to investigate the effects of potassium salts on the changes of chemical properties in submerged soil. Rice plants were cultured in submerged soil using potassium salts. Obtained results were as follows. In the submerged soil cultured with rice plants the value of pH was higher in the potassium chloride plot than in the potassium sulfate plot. The leaching of cations such as calcium, magnesium, potassium and ammonium were higher in the potassium chloride plot than in the potassium sulfate plot. On the other hand, the leaching of phosphate ion was slightly higher in the potassium sulfate plot than in the potassium chloride plot. The leaching of iron was higher in the planted plot than in the non-planted plot, but that of silica was higher in the non-planted plot than in the planted plot. However, the leaching of iron and silica was not affected by potassium salts.

  • PDF

Investigation of the U-shape submerged breakwater performance by the finite-different scheme

  • Barzegar, Mohammad
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.83-97
    • /
    • 2021
  • The submerged U-shape breakwater interaction with the solitary wave is simulated by the Boussinesq equations using the finite-difference scheme. The wave reflection, transmission, and dissipation (RTD) coefficients are used to investigate the U-shape breakwater's performance for different crest width, Lc1, and indent breakwater height, du. The results show that the submerged breakwater performance for a set of U-shape breakwater with the same cross-section area is related to the length of submerged breakwater crest, Lc1, and the distance between the crests, Lc2 (or the height of du). The breakwater has the maximum performance when the crest length is larger, and at the same time, the distance between them increases. Changing the Lc1 and du of the U-shape breakwaters result in a significant change in the RTD coefficients. Comparison of the U-shape breakwater, having the best performance, with the averaged RTD values shows that the transmission coefficients, Kt, has a better performance of up to 4% in comparison to other breakwaters. Also, the reflection coefficients KR and the diffusion coefficients, Kd shows a better performance of about 30% and 55% on average, respectively. However, the model governing equations are non-dissipative. The non-energy conserving of the transmission and reflection coefficients due to wave and breakwater interaction results in dissipation type contribution. The U-shape breakwater with the best performance is compared with the rectangular breakwater with the same cross-section area to investigate the economic advantages of the U-shape breakwater. The transmission coefficients, Kt, of the U-shape breakwater shows a better performance of 5% higher than the rectangular one. The reflection coefficient, KR, is 60% lower for U-shape in comparison to rectangular one; however, the diffusion coefficients, Kd, of U-shape breakwater is 35% higher than the rectangular breakwater. Therefore, we could say that the U-shape breakwater has a better performance than the rectangular one.