• 제목/요약/키워드: non-structural

검색결과 3,803건 처리시간 0.028초

Structural behavior of inverted V-braced frames reinforced with non-welded buckling restrained braces

  • Kim, Sun-Hee;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1581-1598
    • /
    • 2015
  • A concentric braced steel frame is a very efficient structural system because it requires relatively smaller amount of materials to resist lateral forces. However, primarily developed as a structural system to resist wind loads based on an assumption that the structure behaves elastically, a concentric braced frame possibly experiences the deterioration in energy dissipation after brace buckling and the brittle failure of braces and connections when earthquake loads cause inelastic behavior. Consequently, plastic deformation is concentrated in the floor where brace buckling occurs first, which can lead to the rupture of the structure. This study suggests reinforcing H-shaped braces with non-welded cold-formed stiffeners to restrain flexure and buckling and resist tensile force and compressive force equally. Weak-axis reinforcing members (2 pieces) developed from those suggested in previous studies (4 pieces) were used to reinforce the H-shaped braces in an inverted V-type braced frame. Monotonic loading tests, finite element analysis and cyclic loading tests were carried out to evaluate the structural performance of the reinforced braces and frames. The reinforced braces satisfied the AISC requirement. The reinforcement suggested in this study is expected to prevent the rupture of beams caused by the unbalanced resistance of the braces.

Using a feed forward ANN to model the inelastic behaviour of confined sandwich panels

  • Marante, Maria E.;Barreto, Wilmer J.;Picon, Ricardo A.
    • Structural Engineering and Mechanics
    • /
    • 제71권5호
    • /
    • pp.545-552
    • /
    • 2019
  • The analysis and design of complex structures like sandwich-panel elements are difficult; the use of finite element method for the analysis is complicated and time consuming when non-linear effects are considered. On the other hand, artificial neural network (ANN) models can capture the non-linear effects and its application requires lesser computational demand. Two ANN models were trained, tested and validated to compute the force for a given displacement of a sandwich-type roof element; 2555 force and element deformation pairs were used for training the ANN models. For the models trained without considering the damping effect, there were two values in the input layer: maximum displacement and current displacement, and for the model considering damping, displacement from the previous step was used as an additional input. Totally, 400 ANN models were trained. Results show that there is a good agreement between the experimental and simulated data, and the models showed a good performance with a mean square error value of 4548.85. Both the ANN models could simulate the inelastic behaviour, loss of rigidity, and evolution of permanent displacements. The models could also interpolate and extrapolate, which enables them to be used as an analysis and design tool for such complex elements.

Modal parameter identification of civil structures using symplectic geometry mode decomposition

  • Feng Hu;Lunhai Zhi;Zhixiang Hu;Bo Chen
    • Wind and Structures
    • /
    • 제36권1호
    • /
    • pp.61-73
    • /
    • 2023
  • In this article, a novel structural modal parameters identification methodology is developed to determine the natural frequencies and damping ratios of civil structures based on the symplectic geometry mode decomposition (SGMD) approach. The SGMD approach is a new decomposition algorithm that can decompose the complex response signals with better decomposition performance and robustness. The novel method firstly decomposes the measured structural vibration response signals into individual mode components using the SGMD approach. The natural excitation technique (NExT) method is then used to obtain the free vibration response of each individual mode component. Finally, modal natural frequencies and damping ratios are identified using the direct interpolating (DI) method and a curve fitting function. The effectiveness of the proposed method is demonstrated based on numerical simulation and field measurement. The structural modal parameters are identified utilizing the simulated non-stationary responses of a frame structure and the field measured non-stationary responses of a supertall building during a typhoon. The results demonstrate that the developed method can identify the natural frequencies and damping ratios of civil structures efficiently and accurately.

이중구조를 가진 비공기압바퀴의 구조해석에 관한 연구 (A study about structural analysis of double structured non-pneumatic wheel)

  • 송기환;이상훈;손창우;서형진;서태일;유화열;박성학;김경훈
    • Design & Manufacturing
    • /
    • 제9권3호
    • /
    • pp.19-23
    • /
    • 2015
  • Non-pneumatic wheels have been widely used instead of general tube type wheels beause of many reasons, for example, wheel size, price restriction, heavy-duty problem and so on. Almost small size wheels or casters were non-pneumatic type but structural stability was not certified. This paper presents a double structured non-pneumatic wheel, called "smart caster", which consisted with inner and outer wheels connected by chips, and finite element analysis processes were conducted in order to determine important dwsign factors before actual design for mass production. For structural analysis ABAQUS was used under various boundary conditions with incrementally varied loads until 2,000N. Then structural staility was evaluated according to varied loads below ultimate stress. Generally stresses were concentrated at the lower parts of the wheel, and especially contact parts between wheel and ground. In addition, maximum stress appeared at contact parts between the wheel lower part and chips.

  • PDF

Non-stationary and non-Gaussian characteristics of wind speeds

  • Hui, Yi;Li, Bo;Kawai, Hiromasa;Yang, Qingshan
    • Wind and Structures
    • /
    • 제24권1호
    • /
    • pp.59-78
    • /
    • 2017
  • Non-stationarity and non-Gaussian property are two of the most important characteristics of wind. These two features are studied in this study based on wind speed records measured at different heights from a 325 m high meteorological tower during the synoptic wind storms. By using the time-frequency analysis tools, it is found that after removing the low frequency trend of the longitudinal wind, the retained fluctuating wind speeds remain to be asymmetrically non-Gaussian distributed. Results show that such non-Gaussianity is due to the weak-stationarity of the detrended fluctuating wind speed. The low frequency components of the fluctuating wind speeds mainly contribute to the non-zero skewness, while distribution of the high frequency component is found to have high kurtosis values. By further studying the decomposed wind speed, the mechanisms of the non-Gaussian distribution are examined from the phase, turbulence energy point of view.

RC 교각의 3차원 매개변수 모델링 및 비선형 구조해석 입력 데이터 생성 모듈 구축 (3D Parametric Modeling of RC Piers and Development of Data Generation Module for a Structural Analysis with 3D Model of RC Piers)

  • 손유진;신원철;이상철;이헌민;신현목
    • 한국BIM학회 논문집
    • /
    • 제3권3호
    • /
    • pp.19-28
    • /
    • 2013
  • In Korea highway bridges, most piers are the type of one-column or multi-column ones. So, in this study, under an environment applying BIM so fast, to activate researches on two-column piers subjected to bidirectional seismic loading, a 3D parametric modeling method was selected when the model of two-column piers and one-column piers were formed. Also, interface module between input data in structural analysis and 3D model of RC pier was developed. The module can create the input data for non-linear structural analysis like material, geometric properties and additional coefficients.

Analysis of slender structural elements under unilateral contact constraints

  • Silveira, Ricardo Azoubel Da Mota;Goncalves, Paulo Batista
    • Structural Engineering and Mechanics
    • /
    • 제12권1호
    • /
    • pp.35-50
    • /
    • 2001
  • A numerical methodology is presented in this paper for the geometrically non-linear analysis of slender uni-dimensional structural elements under unilateral contact constraints. The finite element method together with an updated Lagrangian formulation is used to study the structural system. The unilateral constraints are imposed by tensionless supports or foundations. At each load step, in order to obtain the contact regions, the equilibrium equations are linearized and the contact problem is treated directly as a minimisation problem with inequality constraints, resulting in a linear complementarity problem (LCP). After the resulting LCP is solved by Lemke's pivoting algorithm, the contact regions are identified and the Newton-Raphson method is used together with path following methods to obtain the new contact forces and equilibrium configurations. The proposed methodology is illustrated by two examples and the results are compared with numerical and experimental results found in literature.

Seismic assessment of a R/C strategic existing building

  • Mehani, Youcef;Kibboua, Abderrahmane
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.617-634
    • /
    • 2007
  • Algeria is a country with a high seismic activity. During the last decade, many destructive earthquakes occurred, particularly in the northern part, causing enormous losses in human lives, buildings and equipments. In order to reduce this risk in the capital and avoid serious damages to the strategic existing buildings, the government decided to invest into seismic upgrade, strengthening and retrofitting of these buildings. In doing so, seismic vulnerability study of this category of buildings has been considered. Structural analysis is performed on the basis of site investigation (inspection of the building, collecting data, materials, general conditions of the building, etc), and existing drawings (architectural plans, structural design, etc). The aim of these seismic vulnerability studies is to develop guidelines and a methodology for rehabilitation of existing buildings. This paper will provide insight to the vulnerability assessment and strengthening of the telecommunication centre, according to the new code RPA 99/version 2003. Both, static equivalent method and non linear dynamic analysis are performed in this study.

Seismic design of steel frames using multi-objective optimization

  • Kaveh, A.;Shojaei, I.;Gholipour, Y.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.211-232
    • /
    • 2013
  • In this study a multi-objective optimization problem is solved. The objectives used here include simultaneous minimum construction cost in term of sections weight, minimum structural damage using a damage index, and minimum non-structural damage in term of inter-story drift under the applied ground motions. A high-speed and low-error neural network is trained and employed in the process of optimization to estimate the results of non-linear time history analysis. This approach can be utilized for all steel or concrete frame structures. In this study, the optimal design of a planar eccentric braced steel frame is performed with great detail, using the presented multi-objective algorithm with a discrete population and then a moment resisting frame is solved as a supplementary example.

Response of non-structural components mounted on irregular RC buildings: comparison between FE and EC8 predictions

  • Aldeka, Ayad B.;Chan, Andrew H.C.;Dirar, Samir
    • Earthquakes and Structures
    • /
    • 제6권4호
    • /
    • pp.351-373
    • /
    • 2014
  • This paper investigates the seismic response of lightweight acceleration-sensitive non-structural components (NSCs) mounted on irregular reinforced concrete (RC) primary structures (P-structures) using non-linear dynamic finite element (FE) analysis. The aim of this paper is to study the influence of NSC to P-structure vibration period ratio, peak ground acceleration, NSC to P-structure height ratio, and P-structure torsional behaviour on the seismic response of the NSCs. Representative constitutive models were used to simulate the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the frequencies of the P-structures. Full dynamic interaction is considered between the NSCs and P-structures. A set of 21 natural and artificial earthquake records were used to evaluate the seismic response of the NSCs. The numerical results indicate that the behaviour of the NSCs is significantly influenced by the investigated parameters. Comparison between the FE results and Eurocode (EC8) predictions suggests that EC8 underestimates the response of NSCs mounted on the flexible sides of irregular RC P-structures when the fundamental periods and heights of the NSCs match those of the P-structures. The perceived cause of this discrepancy is that EC8 does not take into account the amplification in the dynamic response of NSCs induced by the torsional behaviour of RC P-structures.