• Title/Summary/Keyword: non-steam

Search Result 260, Processing Time 0.031 seconds

Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells

  • Kim, Young Jin;Lee, Hyun Mi;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Anode supported solid oxide fuel cells (SOFCs), consisting of Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode, were fabricated and constant current tested with direct internal reforming of methane (steam to carbon ratio ~ 2) as well as hydrogen fuel at $800^{\circ}C$. The cell, operated under direct internal reforming conditions, showed relatively rapid degradation (~ 1.6 % voltage drop) for 95 h; the cells with hydrogen fuel operated stably for 170 h. Power density and impedance spectra were also measured before and after the tests, and post-test analyses were conducted on the anode parts using SEM / EDS. The results indicate that the performance degradation of the cell operated with internal reforming can be attributed to carbon depositions on the anode, which increase the resistance against anode gas transport and deactivate the Ni catalyst. Thus, the present study shows that direct internal reforming SOFCs cannot be stably operated even under the condition of S/C ratio of ~ 2, probably due to non-uniform mixture (methane and steam) gas flow.

Assessment of CUPID code used for condensation heat transfer analysis under steam-air mixture conditions

  • Ji-Hwan Hwang;Jungjin Bang;Dong-Wook Jerng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1400-1409
    • /
    • 2023
  • In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.

A Study on the Use of Bihoon (鼻熏) Therapy, which focuses on Korean traditional medicine (한국 한의서를 중심으로 살펴본 '비훈(鼻熏)요법'의 활용에 대한 연구)

  • KIM Dong-ryul;Lee Jee Young
    • The Journal of Korean Medical History
    • /
    • v.36 no.2
    • /
    • pp.99-113
    • /
    • 2023
  • This paper is a study to find the philological basis of Bihoon (鼻熏) therapy. There is no separate philological study of Bihoon therapy to date, and for this reason, there is no clear definition or specific treatment manual. In this study, a related database was created and analyzed by examining literature data related to Bihoon therapy, focusing on Korean traditional medical books. There were about 1,000 data points related to Bihoon therapy in 45 kinds of medical books. They were largely classified into 1. Acute diseases such as insensitivity, 2. Diseases that occur in the upper human body such as nose, head, eyes, and throat, 3. Women's diseases related to childbirth, 4. Treatment of skin diseases and prevention of infectious diseases. In the case of insensitivity treatment, the focus was on awakening the patient's mind, and the treatment of diseases such as the nose, head, eyes, etc. was focused on resolving each symptom. Symptoms related to childbirth were mainly treated for uterine escapism or fainting after childbirth, while skin diseases were mainly treated for diseases that did not heal well, such as amniotic fluid. If a multifaceted approach to non-discipline therapy is added in the future, it is expected that clinical utilization will also be increased.

Transient full core analysis of PWR with multi-scale and multi-physics approach

  • Jae Ryong Lee;Han Young Yoon;Ju Yeop Park
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.980-992
    • /
    • 2024
  • Steam line break accident (SLB) in the nuclear reactor is one of the representative Non-LOCA accidents in which thermal-hydraulics and neutron kinetics are strongly coupled each other. Thus, the multi-scale and multi-physics approach is applied in this study in order to examine a realistic safety margin. An entire reactor coolant system is modelled by system scale node, whereas sub-channel scale resolution is applied for the region of interest such as the reactor core. Fuel performance code is extended to consider full core pin-wise fuel behaviour. The MARU platform is developed for easy integration of the codes to be coupled. An initial stage of the steam line break accident is simulated on the MARU platform. As cold coolant is injected from the cold leg into the reactor pressure vessel, the power increases due to the moderator feedback. Three-dimensional coolant and fuel behaviour are qualitatively visualized for easy comprehension. Moreover, quantitative investigation is added by focusing on the enhancement of safety margin by means of comparing the minimum departure from nucleate boiling ratio (MDNBR). Three factors contributing to the increase of the MDNBR are proposed: Various geometric parameters, realistic power distribution by neutron kinetics code, Radial coolant mixing including sub-channel physics model.

Intelligent Control of Nonlinear dynamic system Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.70-78
    • /
    • 2004
  • This paper proposes non-linear control method using immune algorithm based fuzzy logic. Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because gain of the PID controller has to be manually tuned by trial and error. An inverted pendulum control problem is selected to illustrate the efficiency of the proposed method and defines relationship state variables $\chi$, $\chi$, $\theta$, $\theta$ using immune fuzzy.

Modeling of Nuclear Power Plant S/G Downcomer Level using GA and Levenberg-Marquardt Algorithm (유전자 알고리즘과 Levenberg-Marquardt 알고리즘을 이용한 원전 증기발생기 수위 거동 모텔링)

  • Park, Chang-Hwan;Lee, Sang-Kyung;Lee, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.204-208
    • /
    • 2001
  • In this paper, we induce the linear transfer function of Downcomer water level of NPP(Nuclear Power Plant) Steam Generator using Genetic Algorithm and Levenberg-Marquardt Algorithm. The characteristic of NPP S/G mechanism is so high-non-linear that it is hard to achieve mathematical expression. So we use non-mathematical Algorithms to get the model function of NPP S/G water level. S/G level controller would be designed with this transfer function as the plant.

  • PDF

Device Design for Inspection Curved Pipes using the Mobile Robot (이동로봇을 이용한 곡관(Curved Pipes) 검사용 디바이스 설계)

  • 조현영;최창환;최용제;김승호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1458-1462
    • /
    • 2003
  • High temperature and high pressure heavy water flows through the pipes in atomic power plants. The curved parts of pipes are critical parts in that they change the direction of steam flow, and these parts are especially affected by severe wear. Therefore, most pipes in atomic power plants are tested by non-destructive examination by workers who use ultrasonic sensors to measure the wall thickness of pipes. But not only are these pipes located in a very dangerous environment, but the space is also very limited. For the safety of workers, it is necessary to design a device that uses a mobile robot that can inspect curved pipes. This paper presents the design and construction of a small device that can generate the necessary contact forces between ultrasonic sensors and pipe walls in a limited space. And a mobile robot is used in place ortho worker for successful non-destructive examination.

  • PDF

Hepatic Drug Metabolism Modifier from Arils of Myristica fragrans

  • Shin, Kuk-Hyun;Woo, Won-Sick
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.1
    • /
    • pp.91-99
    • /
    • 1986
  • The single treatment of mice with steam distillate, non-volatile ether extract and methanol extract from mace (Arils of Myristica fragrans) caused a significant prolongation of hexobarbital-induced narcosis and increase in strychnine toxicity as well as a significant decrease in hepatic microsomal drug metabolizing enzyme activities. On 7 consecutive daily administrations, however, the duration of hypnosis was markedly shortened and significant increases in the hepatic enzyme activities were shown. With systematic fractionation by $SiO_2$ column chromatography of non-volatile ether fraction monitoring by animal tests a new lignan (mp $70{\sim}72^{\circ}$, MW 328, $[{\alpha}]^{20}_D+5.28$) was isolated as an active principle and its structure was elucidated as (2R, 3S)-1-(3,4-methylendioxyphenyl)-2,3 dimethyl-4-(4-hydroxy-3-methoxyphenyl) butane.

  • PDF

EAF Dust Treatment at Miike Smelting CO., LTD.

  • Noda, Shinji;Tatehana, Yoshikazu
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.375-380
    • /
    • 2001
  • MF is a half shaft blast furnace which has been developed at Mitsui Miike Smelter in the 1960’s to treat vertical retort residue. The MF has also been tested for treatment of various recycling materials and wastes. Now various secondaries and wastes (EAF dust, zinc leaching residue, Cu sludge, etc ) are mainly treated. Powder materials are briquetted with reductant before being fed to the furnace. Products are crude zinc oxide, matte, non-hazardous slag and steam. Zinc and lead are recovered in oxide dust, and copper and silver are recovered in matte. The MF can be widely applied to many kinds of materials which contain such non-ferrous metal-valuables. In addition, the improvement in operation and technology has effectively made the unit capacity much larger. The MF now has many advantages for these treatment processes.

  • PDF

Examination on Shock Vibration of Feed-Water Recirculation piping in Power Site (발전소 대형 수배관계의 충격성 이상 과도진동의 특성 고찰 사례)

  • Kim, Yeon-Whan;Yang, Gyeong-Hyeon;Bae, Si-Yeon;Yu, Jae-Myeong;Jo, Jong-Hyeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.475-479
    • /
    • 2011
  • Leak problem with large pressure drop occurrs non-periodic shock pulsation due to the deterioration of a isolation valve in feed-water recirculation piping system. This paper discusses on the shock vibration and noise occurred due to the effect of acoustical shock pulsations by degradation of the isolation valve in a power site.

  • PDF