• Title/Summary/Keyword: non-solvent addition

Search Result 71, Processing Time 0.027 seconds

The Uptake of Solvent in Polymeric Thin Membranes By a Relaxation-Sorption Coupled Mechanism

  • Song, Kyu-Min;Hong, Won-Hi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.43-44
    • /
    • 1995
  • The diffusion behavior of liquid into polymer has been described by Fick's law, but the departure from Fickian diffusion is frequently found. In this study, 'noble' expressions for the rates of relaxation and sorption are introduced to eliminate these limitations. The ralaxation-sorption coupled mechanism model are based on the possibility of contacting liquid molecule and the active site which has the numerical concept of free volume. The concept has an analogy of reaction rate expressed by the possibility of collision with molecules and used in adsorption and reactive extraction etc. The new model simulated by Rungc-Kutta method for initial-value problem and Fickian diffusion is caompared with experimental data. The results show that the ralaxation-sorption coupled mechanism is able to account well for Fickian and non-Fickian sorption behavior including sigmoid and two-stage. In addition, this model has a chance of expansion to multi-component sorption with ease.

  • PDF

Disaggregation Simulation Analysis on Distinct Aβ40 Fibril Models

  • Cho, Tony;Yu, Youngjae;Shin, Seokmin
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.55-61
    • /
    • 2016
  • $A{\beta}_{40}$ peptides form oligomers that later aggregate into a plaque, which is deemed to be a leading cause of Alzheimer's Disease. Its non-crystalline morphology has limited an understanding of comprehensive structural study. In this research, computational biomolecular simulations were performed in the following order: solvent and ion addition in a box, energy minimization of protein, equilibration, and periodic boundary condition disaggregation of a monomer from fibril. The result founded the two-fold model is 25% more stable in the simulation environment, and the steric zippers held on most tightly until 220 ps of simulation. The study supports the previous findings that two-fold aggregate $A{\beta}_{40}$ is more stable at 310 K and discusses further how much contribution steric-zipper and hydrogen bonding are making.

  • PDF

Biopharmaceutical Studies on Zipeprol Dihydrochloride Microcapsules (염산지페프를 마이크로캅셀에 관한 생물약제학적 연구)

  • Yong, Jae-Ick;Kim, Ock-Nam
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.187-195
    • /
    • 1988
  • Poorly permeable $Eudragit^{\circledR}$ RS 100 polymer was used as a wall material for the microencapsulation of zipeprol dihydrochloride by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene in cyclohexane, and microcapsules obtained were evaluated in vitro by particle size analysis, scanning electron microscopy, drug release test and in vivo bioavailability test in rats. The mechanism of drug release from microcapsules appeared to fit Higuchi matrix model kinetics. The area under the first moment of plasma concentration-time curve of the microcapsules obtained was considerably increased (p<0.05) as compared with that from zipeprol dihydrochloride oral solution. Therefore, it may be suggested that $Eudragit^{\cirledR}$ RS 100 coated zipeprol dihydrochloride microcapsules can be used as a sustained release medication.

  • PDF

Causes of Asphalt Waterproofing Membrane Dissolution due to the Addition of the Solvent in Hybrid Water-proofing System (복합방수공법에 있어서 용제 첨가에 따른 아스팔트층 용해원인에 관한 연구)

  • Kim, Dong-Bum;Seo, Hyun-Jae;Song, Je-Young;Kwak, Kyu-Sung;Bae, Kee-Sun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.53-56
    • /
    • 2010
  • In this study, we conducted an impact assessment of the amount of volatile organic solvents addition on hybrid water-proofing system of urethane waterproof coating material and modified asphalt sheet. Also, we conducted a comparative assessment of whether modified asphalt sheet is dissolved or not and oil leakage by dissolution in order to perform a comparative analysis of characteristics of the impact on modified asphalt sheet according to the volatility of volatile organic solvents included in urethane waterproof coating material. The test was carried out by adding the same amount of organic solvents into each experimental group which is subject to volatility and non-volatility of organic solvents, respectively. The results of the test showed that in both experimental groups modified asphalt sheet was dissolved when adding over 10 percent of organic solvents regardless of volatility, and oil leakage observed only in the experimental group subject to volatility.

  • PDF

Effects of Suaeda asparagoides MIQ extracts on mice ileal motility (마우스 회장 운동에 대한 나문재 (Suaeda asparagoides MIQ) 추출물의 효과)

  • Song, Jae-Chan;Park, Chang-Hee;Kim, Hyun-Tak;Endale, Mehari;Rhee, Man-Hee;Park, Seung-Chun;Kim, Kil-Soo;Kim, Tae-Wan
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.323-326
    • /
    • 2006
  • Suaeda (S.) asparagoides $M_{IQ}$, one of the halophyte groups, has been used as a folk remedy for digestive disturbances in Korea. However, its pharmacological activity on gastrointestinal motility has not been reported yet. In this study, the effects of this halophyte extracts with various solvent fractions (ethanol, hexane, chloroform, ethyl acetate, butanol, and water) on mice ileal spontaneous motility was examined. All solvent fractions at the concentration of $100{\mu}g/ml$ showed inhibitory actions on spontaneous motility of ileum with the potency order of water > 70% ethanol > hexane ${\gg}$ chloroform ${\geq}$ butanol ${\geq}$ ethyl acetate, respectively. In addition, the water fraction of extracts from S. asparagoides $M_{IQ}$ (WFSA) dose-dependently ($1-100{\mu}g/ml$) inhibited the amplitude of spontaneous phasic contraction and area under the contractile curve (AUC). The inhibitory effect of water fraction at the concentration of $10{\mu}g/ml$ was not affected by tetrodotoxin (TTX), $Na^+$ channel blocker ($1{\mu}M$), and $N^w$-nitro-L-arginine Methyl Ester (L-NAME), nitric oxide synthase inhibitor ($100{\mu}M$). However, cyclopiazonic acid (CPA, $10{\mu}M$), inhibitor of sarcoplasmic reticulum $Ca^{2+}$-ATPase, almost blocked the inhibitory effects of WFSA ($10{\mu}g/ml$) on the spontaneous phasic contraction of mouse ileum. But, CPA did not inhibit the lowering basal tone effects of WFSA. The result of this study showed that various extracts of S. asparagoides $M_{IQ}$ induce inhibitory effects on spontaneous contraction of mice ileal segments. More over, the polar solvent fractions were shown to be more potent than non-polar solvent fractions. The effects of S. asparagoides $M_{IQ}$ extracts are not mediated by nerve or nitric oxide. The inhibitory effects of WFSA at least partially mediated by sarcoplasmic reticulum $Ca^{2+}$-ATPase. However, further study is required to determine the exact pharmacological mechanisms of this halophyte on its gastrointestinal motility inhibitory effects.

Solubility and Physicochemical Stability of Ondansetron Hydrochloride in Various Vehicles (용제 중 염산온단세트론의 용해성 및 안정성)

  • Gwak, Hye-Sun;Oh, Ik-Sang;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • The solubility and stability of ondansetron hydrochloride (OS) in various vehicles were determined. The effect of cyclodextrins (CD) on the solubility of OS in water was determined by equilibrium solubility method. The solubility of OS at $32^{\circ}C$ increased in the rank order of isopropyl myristate (IPM) < propylene glycol laurate (PGL) ${\ll}$ propylene glycol monolaurate < propylene glycol monocaprylate (PGMC) < poly(ethylene glycol) 400 < diethylene glycol mono ethyl ether (DGME) < ethanol < poly(ethylene glycol) 300 < water (36.1 mg/ml) ${\ll}$ propylene glycol (PG) (283 mg/ml). The addition of PG or DGME to non-aqueous vehicles such as IPM, PGL and PGMC markedly increased the solubility of OS. The addition of CDs in water increased the solubility. Apparent stability constant for the CD complexation with OS was calculated to be $25.5\;M^{-1}$ for $2-hydroxypropyl-{\beta}-CD\;(2HP{\beta}CD)$. Twenty mM ${\beta}-CD$, 69.4 mM sulfobutyl ether ${\beta}-CD$ and 115.4 mM $2HP{\beta}CD$ increased the aqueous solubilty of OS 1.27, 2.18 and 1.85 times, respectively. OS was stable in buffered aqueous solution (pH 5.0). However, OS was relatively unstable in non-aqueous vehicles in the order of PG

Fabrication of poly(ethylene oxide)/clay nanocomposites using supercritical fluid process (초임계 공정을 이용한 폴리에틸렌옥사이드/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.143-150
    • /
    • 2014
  • Recently, supercritical fluid process has been widely used in material synthesis and processing due to their remarkable properties such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive solvent owing to their characteristics including non-toxic, non-flammable, chemically inert, and also it has moderate critical temperature and critical pressure. In addition, supercritical carbon dioxide would dissolve many small organic molecules and most polymers. In this study, we have prepared the poly (ethylene oxide)/clay nanocomposites using supercritical fluid as a carbon dioxide. Commercialized Cloisites-15A and Cloisites-30B used in this study, which are modified with quaternary ammonium salts. The nanocomposites of polymer/clay were characterized by XRD, TGA and DSC. Poly (ethylene oxide)/clay nanocomposites by supercritical fluid show higher thermal stability than nanocomposites prepared by melt process. In addition, supercritical fluid process would be increased dispersibility of the nanoclay in the matrix.

Separation and recovery of semi-volatile substances of Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus by reduced pressure collections and GC-MS

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • When extracting semi-volatile components of herbal medicines using hot water vapor, some substances may react with water vapor or oxygen, and some volatile substances may be lost, when using an organic solvent extraction method has the disadvantage that it may contain a non-volatile material and residual organic solvent. In addition, it is inefficient to separate semi-volatile substances from herbal medicines into each single component and conduct biological activity research for each component to determine the effective ingredient, and some components may be lost in the separation process. In this study, semi-volatile substances evaporated under two pressure-reduced conditions in Chinese herbal medicines such as Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were separated by cooling with liquid nitrogen. Those were analyzed by gas chromatography-mass spectrometry (GC-MS) to identify the components, and this method may be used to study biological activities at the cellular level. The substances separated under reduced pressure, essential oil obtained by simultaneous distillation extraction (SDE) method and substances by using solid phase micro-extraction (SPME) from Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were analyzed by GC-MS. In the case of Cnidii Rhizoma and Aucklandiae Radix, there were some differences among the essential oil components obtained by SDE and those identified by low temperature capture (CT) and SPME method, these were believed to be produced by some volatiles reacting with water or oxygen at the boiling point temperature of water.

Ultrasonic-assisted Micellar Extraction and Cloud-point Pre-concentration of Major Saikosaponins in Radix Bupleuri using High Performance Liquid Chromatography with Evaporative Light Scattering Detection

  • Suh, Joon-Hyuk;Yang, Dong-Hyug;Han, Sang-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2637-2642
    • /
    • 2011
  • A new ultrasonic-assisted micellar extraction and cloud-point pre-concentration method was developed for the determination of major saikosaponins, namely saikosaponins -A, -C and -D, in Radix Bupleuri by high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD). The non-ionic surfactant Genapol X-080 (oligoethylene glycol monoalkyl ether) was chosen as the extraction additive and parameters affecting the extraction efficiency were optimized. The highest yield was obtained with 10% (w/v) Genapol X-080, a liquid/solid ratio of 200:1 (mL/g) and ultrasonic-assisted extraction for 40 min. In addition, the optimum cloud-point pre-concentration was reached with 10% sodium sulfate and equilibration at $60^{\circ}C$ for 30 min. Separation was achieved on an Ascentis Express C18 column (100 ${\times}$ 4.6 mm i.d., 2.7 ${\mu}M$) using a binary mobile phase composed of 0.1% acetic acid and acetonitrile. Saikosaponins were detected by ELSD, which was operated at a $50^{\circ}C$ drift tube temperature and 3.0 bar nebulizer gas ($N_2$) pressure. The water-based solvent modified with Genapol X-080 showed better extraction efficiency compared to that of the conventional solvent methanol. Recovery of saikosaponins ranged from 93.1 to 101.9%. An environmentally-friendly extraction method was successfully applied to extract and enrich major saikosaponins in Radix Bupleuri.

Preparation of Self-Cleaning Coating Films with Nano- and Microstructure (나노마이크로 구조의 자기세정 기능성 코팅막의 제조)

  • Jeong, A-Rong;Kim, Jun-Su;Yun, Jon-Do
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.416-420
    • /
    • 2012
  • Recently nanoscience and nanotechnology have been studied intensively, and many plants, insects, and animals in nature have been found to have nanostructures in their bodies. Among them, lotus leaves have a unique nanostructure and microstructure in combination and show superhydrophobicity and a self-cleaning function to wipe and clean impurities on their surfaces. Coating films with combined nanostructures and microstructures resembling those of lotus leaves may also have superhydrophobicity and self-cleaning functions; as a result, they could be used in various applications, such as in outfits, tents, building walls, or exterior surfaces of transportation vehicles like cars, ships, or airplanes. In this study, coating films were prepared by dip coating method using polypropylene polymers dissolved in a mixture of solvent, xylene and non-solvent, methylethylketon, and ethanol. Additionally, attempts were made to prepare nanostructures on top of microstructures by coating with the same coating solution with an addition of carbon nanotubes, or by applying a carbon nanotube over-coat on polymer coating films. Coating films prepared without carbon nanotubes were found to have superhydrophobicity, with a water contact angle of $152^{\circ}$ and sliding angle less than $2^{\circ}$. Coating films prepared with carbon nanotubes were also found to have a similar degree of superhydrophobicity, with a water contact angle of 150 degrees and a sliding angle of 3 degrees.