Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies (적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로)
-
- Journal of Intelligence and Information Systems
- /
- v.20 no.1
- /
- pp.35-48
- /
- 2014
According to the 2013 construction market outlook report, the liquidation of construction companies is expected to continue due to the ongoing residential construction recession. Bankruptcies of construction companies have a greater social impact compared to other industries. However, due to the different nature of the capital structure and debt-to-equity ratio, it is more difficult to forecast construction companies' bankruptcies than that of companies in other industries. The construction industry operates on greater leverage, with high debt-to-equity ratios, and project cash flow focused on the second half. The economic cycle greatly influences construction companies. Therefore, downturns tend to rapidly increase the bankruptcy rates of construction companies. High leverage, coupled with increased bankruptcy rates, could lead to greater burdens on banks providing loans to construction companies. Nevertheless, the bankruptcy prediction model concentrated mainly on financial institutions, with rare construction-specific studies. The bankruptcy prediction model based on corporate finance data has been studied for some time in various ways. However, the model is intended for all companies in general, and it may not be appropriate for forecasting bankruptcies of construction companies, who typically have high liquidity risks. The construction industry is capital-intensive, operates on long timelines with large-scale investment projects, and has comparatively longer payback periods than in other industries. With its unique capital structure, it can be difficult to apply a model used to judge the financial risk of companies in general to those in the construction industry. Diverse studies of bankruptcy forecasting models based on a company's financial statements have been conducted for many years. The subjects of the model, however, were general firms, and the models may not be proper for accurately forecasting companies with disproportionately large liquidity risks, such as construction companies. The construction industry is capital-intensive, requiring significant investments in long-term projects, therefore to realize returns from the investment. The unique capital structure means that the same criteria used for other industries cannot be applied to effectively evaluate financial risk for construction firms. Altman Z-score was first published in 1968, and is commonly used as a bankruptcy forecasting model. It forecasts the likelihood of a company going bankrupt by using a simple formula, classifying the results into three categories, and evaluating the corporate status as dangerous, moderate, or safe. When a company falls into the "dangerous" category, it has a high likelihood of bankruptcy within two years, while those in the "safe" category have a low likelihood of bankruptcy. For companies in the "moderate" category, it is difficult to forecast the risk. Many of the construction firm cases in this study fell in the "moderate" category, which made it difficult to forecast their risk. Along with the development of machine learning using computers, recent studies of corporate bankruptcy forecasting have used this technology. Pattern recognition, a representative application area in machine learning, is applied to forecasting corporate bankruptcy, with patterns analyzed based on a company's financial information, and then judged as to whether the pattern belongs to the bankruptcy risk group or the safe group. The representative machine learning models previously used in bankruptcy forecasting are Artificial Neural Networks, Adaptive Boosting (AdaBoost) and, the Support Vector Machine (SVM). There are also many hybrid studies combining these models. Existing studies using the traditional Z-Score technique or bankruptcy prediction using machine learning focus on companies in non-specific industries. Therefore, the industry-specific characteristics of companies are not considered. In this paper, we confirm that adaptive boosting (AdaBoost) is the most appropriate forecasting model for construction companies by based on company size. We classified construction companies into three groups - large, medium, and small based on the company's capital. We analyzed the predictive ability of AdaBoost for each group of companies. The experimental results showed that AdaBoost has more predictive ability than the other models, especially for the group of large companies with capital of more than 50 billion won.
Currently, thanks to the major stride made in developing wired and wireless communication technology, a variety of IT services are available on land. This trend is leading to an increasing demand for IT services to vessels on the water as well. And it is expected that the request for various IT services such as two-way digital data transmission, Web, APP, etc. is on the rise to the extent that they are available on land. However, while a high-speed information communication network is easily accessible on land because it is based upon a fixed infrastructure like an AP and a base station, it is not the case on the water. As a result, a radio communication network-based voice communication service is usually used at sea. To solve this problem, an additional frequency for digital data exchange was allocated, and a ship ad-hoc network (SANET) was proposed that can be utilized by using this frequency. Instead of satellite communication that costs a lot in installation and usage, SANET was developed to provide various IT services to ships based on IP in the sea. Connectivity between land base stations and ships is important in the SANET. To have this connection, a ship must be a member of the network with its IP address assigned. This paper proposes a SANET-CC protocol that allows ships to be assigned their own IP address. SANET-CC propagates several non-overlapping IP addresses through the entire network from land base stations to ships in the form of the tree. Ships allocate their own IP addresses through the exchange of simple requests and response messages with land base stations or M-ships that can allocate IP addresses. Therefore, SANET-CC can eliminate the IP collision prevention (Duplicate Address Detection) process and the process of network separation or integration caused by the movement of the ship. Various simulations were performed to verify the applicability of this protocol to SANET. The outcome of such simulations shows us the following. First, using SANET-CC, about 91% of the ships in the network were able to receive IP addresses under any circumstances. It is 6% higher than the existing studies. And it suggests that if variables are adjusted to each port's environment, it may show further improved results. Second, this work shows us that it takes all vessels an average of 10 seconds to receive IP addresses regardless of conditions. It represents a 50% decrease in time compared to the average of 20 seconds in the previous study. Also Besides, taking it into account that when existing studies were on 50 to 200 vessels, this study on 100 to 400 vessels, the efficiency can be much higher. Third, existing studies have not been able to derive optimal values according to variables. This is because it does not have a consistent pattern depending on the variable. This means that optimal variables values cannot be set for each port under diverse environments. This paper, however, shows us that the result values from the variables exhibit a consistent pattern. This is significant in that it can be applied to each port by adjusting the variable values. It was also confirmed that regardless of the number of ships, the IP allocation ratio was the most efficient at about 96 percent if the waiting time after the IP request was 75ms, and that the tree structure could maintain a stable network configuration when the number of IPs was over 30000. Fourth, this study can be used to design a network for supporting intelligent maritime control systems and services offshore, instead of satellite communication. And if LTE-M is set up, it is possible to use it for various intelligent services.
To provide useful information for developing new high yielding soybean varieties and for improving cultural practices, an investigation was made on variation of dry matter production and on relationship among several agronomic characters of soybean plants grown under different planting times and densities as well as under different fertilizer levels, using Kwang-kyo, Dong puk-tae, and Suke # 51 as determinate types and Shelby, SRF-300 and Harosoy as indeterminate types at the Crop Experiment Station during the period of 1972 and 1973. The results obtained were summarized as follow: 1. The dry weight, CGR and LAI at the initial flowering stage were high in the high plant population irrespective of varieties, planting times, and fertilizer levels. However, those characters of the indeterminate type were lower than those of the determinate types. The same characters of the indererminate type at the terminal leaf stage were either same or higher than those of the determinate types. 2. The dry weight of the determinate type at the initial flowering stage was similar to the indeterminate, type, when planting times were May 21 or June 15. The dry weights of both types of varieties were low when planted on July 10. When fertilizer levels were increased, the CGR, dry weight and LAI at the initial flowering stages were also increased. 3. Even though significant differences of LAI were obtained among the varieties within the same plant type, the indeterminate type was in general lower than that of the determinate type regardless of planting time and densities, or fertilizer levels, while the yield of the indeterminate type was comparable to the yield of the determinate type. 4. The high degree of leaf- and petiole-fall at the greenbean stage was highly associated with early planting and high levels of fertilizers. However, less amount of leaf- or petiole-fall was found when planted on July 10 or under low plant population. 5. The percent of stem weight was high under higher plant population, while the percent of leaf weight was high under lower plant population. When planting time was late, the percent of stem and petiole weight were reduced, while the leaf weight was increased. 6. The percent of pod weight of the determinate type at the terminal leaf stage was about 2% when planted on May 21, about 8% when planted on June 15, and about 9% when planted on July 10. The percent of pod weight of the indeterminate type at the terminal leaf stage were about 6 % when planted on May 21, 14% when planted on June 15 and 21% when planted on July 10. 7. Kwang kyo showed less degree of leaf-fall even when lodged due to high levels of fertilizer applied, while SRF-300 showed great damage due to lodging. 8. High yields were obtained when planted on May 21, but there were little yield differences between yields from May 21 and June 15 plantings. The reduction of yield due to late planting of July 10 was less apparent in the determinate type of varieties, while it was high in the indeterminate type. 9. The optimum plant population per are for high yield was 1, 250 to 2, 500 plants when planted on May 21, 2, 500 plants when planted on June 15, and 3, 333 plants when planted on July 10. 10. High correlation coefficients were obtained between dry matter weight and LAI at the terminal leaf stages, and between the dry matter weight and yield at the greenbean stages. The optimum dry weight for high yield in the determinate type was expected to be 25 kg. per are at the initial flowering stage and 50 kg. per are at the terminal leaf stage. In the indeterminate type the LAI and dry weight at the greenbean stage were 4 to 5 and 80 kg. per are, respectively. 11. Under the high plant population plant height was increased, while the stem diameter and the number of nodes and branches were reduced. Consequently, the percent of mainstem to main stem plus branches were increased, and the length of internode was also elongated. The ratios of stem weight, number of nodes and pods, and yield of main stem were increased when high plant population was associated with the early planting. The percent of main stem to branches for the indeterminate type was higher than that of the determinate type. 12. Under the high plant densities and late planting, the percent of the pod number and yields of main stem were increased, indicating that varieties with no or less branches were better adaptable under such conditions. 13. High degree of simple correlation coefficients was obtained between the LAI at the initial flowering stage and terminal leaf stage, and the total node number, dry matter and dry stem weight of both determinate and indeterminate types. Even though no significant correlation was found between the LAI at the initial flowering stage of the determinate type and the stem length and pod number per are, highly significant correlation coefficients were obtained between such characters in the indeterminate type of varieties. 14. The dry matter was positively correlated with the LAI, CGR, stem length, and pod number, node number and dry stem weight per are, while no significant correlation was found between the dry matter and stem diameter. 15. The correlation coefficients between lodging index and the LAI, dry weight, stem length and dry stem weight were highly significant. Negative correlation was obtained for the indeterminate type between the stem diameter and lodging index. The correlation coefficient between the stem diameter and lodging index was non-significant for the determinate type, while positive correlation was obtained between the yield and lodging index in the determinate type. The lodging index was also positively correlated with average length of internode of main stem. 16. The 100 seed weight appeared to be lowered under the high plant population and no fertilizer condition, and when planted late. Apparent differences of 100 seed weight were found between main stem and branches, being higher for the main stem than for the branches. 17. No variation of protein content was found due to different cultural practices. However, the oil content was apparently reduced when planted late.
To obtain basic information on the breeding of early maturing, short culm naked-barley varieties, the following 10 varieties, Ehime # 1, Shikoku #42, Yamate hadaka, Eijo hadaka, Kagawa # 1, Jangjubaeggwa, Baegdong, Cheongmaeg, Seto-hadaka and Mokpo #42 were used in diallel crosses in 1974. Heading date, culm length and grain yield per plant for the parents,
The author intended to investigate external and internal changes in the cone structure, changes in water content, sugar, fat and protein during the period of seed maturation which bears a proper germinability. The experimental results can be summarized as in the following. 1. Male flowers 1) Pollen-mother cells occur as a mass from late in April to early in May, and form pollen tetrads through meiosis early and middle of May. Pollen with simple nucleus reach maturity late in May. 2) Stamen number of a male flower is almost same as the scale number of cone and is 69-102 stamens. One stamen includes 5800-7300 pollen. 3) The shape is round and elliptical, both of a pollen has air-sac with
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70