• Title/Summary/Keyword: non-road

Search Result 611, Processing Time 0.023 seconds

A study of the Hydraulic & Hydrologic Causes on the Road Drainage Poor Site (노면배수 취약구간의 수리.수문 원인 분석)

  • Lee, Man-Seok;Lee, Kyung-Ha;Kang, Min-Soo;Kim, Heung-Rae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • This study aims to compare hydraulic & hydrologic design characteristics by examining generated on weak points for road drainage poor sites. More appropriated methodology of rainfall-intensity calculated is to consider minutely rainfall-intensity decision method for road drainage basins. To use non-uniform flow analysis methodology for road surface drainage facilities inlet spacing decision methods is better than present experience inlet spacing decision equations.

A study on the air pollutant emission trends in Gwangju (광주시 대기오염물질 배출량 변화추이에 관한 연구)

  • Seo, Gwang-Yeob;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

Comparative Analysis of Elderly's and Non-elderly's Human Traffic Accident Severity (고령운전자와 비고령운전자의 인적교통사고 심각도 비교분석)

  • Lee, Sang Hyuk;Jeung, Woo Dong;Woo, Yong Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.133-144
    • /
    • 2012
  • This study focused on estimating influential factors of traffic accidents and analyzing traffic accident severity of elderly and non elderly using traffic accident data. In order to reclassify elderly and non elderly traffic accident by a statistical method from entire traffic accident data, multiple discriminant analysis was applied. Also ordered logit model was applied for analyzing traffic accident severities using traffic accident severities as an independent variable and transportation facilities, road conditions and human characteristics as dependent variables. As results of the comparison between elderly and non elderly traffic accident, the traffic accident severity was affected by the age, types of traffic accidents, human characteristics and road conditions as well. Also, transportation facilities and road conditions affected to more elderly traffic accident than non elderly. Therefore, traffic accident severity would be decreased with the improvement of transportation facilities and road conditions for the elderly.

A Traffic Equilibrium Model with Area-Based Non Additive Road Pricing Schemes (지역기반의 비가산성 도로통행료 부과에 따른 교통망 균형모형)

  • Jung, Jumlae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.649-654
    • /
    • 2008
  • In the definition of non additive path, the sum of travel costs of links making up the path is not equal to the path cost. There are a variety of cases that non-additivity assumption does not hold in transportation fields. Nonetheless, traffic equilibrium models are generally built up on the fundamental hypothesis of additivity assumption. In this case traffic equilibrium models are only applicable within restrictive conditions of the path cost being linear functions of link cost. Area-wide road pricing is known as an example of realistic transportation situations, which violates such additivity assumption. Because travel fare is charged at the moment of driver's passing by exit gate while identified at entry gate, it may not be added linearly proportional to link costs. This research proposes a novel Wordrop type of traffic equilibrium model in terms of area-wide road pricing schemes. It introduces binary indicator variable for the sake of transforming non-additive path cost to additive. Since conventional shortest path and Frank-Wolfe algorithm can be applied without route enumeration and network representation is not required, it can be recognized more generalized model compared to the pre-proposed approaches. Theoretical proofs and case studies are demonstrated.

Characteristics of UNFS Using Carbide Pellet and Zeolite Pellet to Remove Heavy Metals Contained in Road Runoff (탄화물 및 제올라이트 여재를 사용하는 UNFS(Upflow Non-point source Filtering System) 시설의 노면배수에 함유된 중금속 제거 특성)

  • Kim, Boo-Gil;Park, Han-Ju;Kim, Il-Ryong
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1147-1154
    • /
    • 2008
  • Road runoff, one of non-point source pollutants, contains various heavy metals, most of which flow into discharge waters without being treated. The mechanism of removing the heavy metals in water is similar to that of removing micro-particles. Therefore, it is considered that it is possible to remove a lot of the heavy metals contained in the road runoff by filtering or absorbing them. In this paper, performed has been a basic study on the characteristics of UNFS (Up Flow Non-Point Source Filtering System) using carbide pellet and zeolite pellet as double-layer filtering mediums to treat the road runoff. The removal rate with filtering and absorption time has been shown as follows: 29.0% for Cr; 27.8% for Cd; 25.7% for Fe; 25.4% for Co; 21.2% for Pb; ]9.6% for Zn; 18.2% for Al; 17.0% for Mn; 11.3% for Ni; 7.5% for Cu. The overall removal rate according to influx change has been shown to be approximately 30%, and the load of heavy metals flowing out in initial precipitation could be reduced by using carbide as a recycling filtering medium. When the removal as coarse particles settle is added up, it is expected that UNFS will result in a higher removal rate.

Decision Making Methods for Types of Roadside Non-point Pollution Reduction Facilities and Its Application (도로비점오염 저감시설의 유형선정방법 개발 및 적용)

  • Cho, Hye Jin
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.256-261
    • /
    • 2020
  • Roadside non-point pollution reduction facilities are classified as infiltration, vegetation, reservoir, and wetland types based on their respective pollution reduction mechanisms. However, without a detailed analysis of the road and traffic conditions it is very difficult for civil engineers to determine which category of pollution reduction facility is best suited to their planning requirements. To address this issue, we propose a new decision-making method for the selection of roadside non-point pollution reduction facilities. The principal factors informing the proposed decision-making methods are the road characteristics, including location, structure, number of lanes, and traffic volume. As a result of the study, a total of new pollution reduction plans were developed, with their selection conditions and the corresponding applicable facilities established. The effectiveness of the proposed pollution reduction schemes was demonstrated for roads in Kyounggi-do, providing a valuable basis for future pollution reduction plans.

Characteristics of Non-point Pollutants from the Road Runoff (1): Water Quality (도로노면 유출수의 비점오염원 배출 특성(1): 기본 수질 항목)

  • Park, Sangwoo;Oh, Jeill;Choi, Younghwa;Seo, Jeongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.225-233
    • /
    • 2007
  • Road runoff water is one of the non-point sources (NPSs) of pollution negatively influencing drinking water source. Numerous road runoff NPS waters have been studied for over the last decade. However, the sources of pollution can be conditional, seasonal, or accidental. Therefore, measurement of pollutant loadings in different site is necessary to estimate the effect of road runoff water. The objective of this study was to examine the quality of road runoff water from a city bridge in Seoul, Korea. This study was conducted for two years to assess annual discharge pollution loads. In this study, key water quality parameters including chemical oxygen demand ($COD_{Cr}$), biochemcial oxygen demand ($BOD_5$), total nitrogen (T-N), total phosphorus (T-P), and suspended solid (SS) were measured at 18 different events. The results showed that typically the pollutant concentrations are higher at the beginning of each event and decrease afterwards. The first 20% of the volume of the runoff from each event is transporting 46% ($COD_{Cr}$), 48% ($BOD_5$), 50% (T-N), 34% (T-P), 30% (SS), respectively. The event mean concentrations (EMCs) were $COD_{Cr}$ (199 mg/L), $BOD_5$ (41.2 mg/L), T-N (7.97 mg/L), T-P (0.42 mg/L) and SS (113 mg/L). Although the results were consistent with the previous study (Barbosa and Hvitved-Jacobsen, 1999), $COD_{Cr}$, $BOD_5$, T-N exhibit a stronger first flush effect compared to the other contaminants.

Characteristics of Road Runoff depending on the Rainfall Intensity (강우강도에 따른 노면유출수의 유출 특성)

  • Kim, Seog-Ku;Kim, Young-Im;Yun, Sang-Leen;Lee, Yong-Jae;Kim, Ree-Ho;Kim, Jong-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.494-499
    • /
    • 2004
  • Growth in population and urbanization has progressively increased the loadings of pollutants from non-point sources as well as point sources. Therefore, it is necessary to manage both point and non-point sources contaminations for protecting water environment and improving water quality. This study investigated the characteristics of pollutant release over a wide range of rainfall intensities as a requisite to control road runoff that accounts for the largest portion of non-point source contamination in urban areas. Samples of runoff rainwater collected from real road surfaces were analyzed for physicochemical parameters such as pH, suspended solids, and heavy metals. A experimental model road ($30cm{\times}30cm$) was also used to evaluate wash-off properties of pollutants deposited on the surface as functions of time and rainfall intensity. Analysis of runoff samples on rain events showed that the pollutant wash-off patterns for heavy metal and suspended solids were similar. This implies that the particles in rainwater adsorb heavy metals. Experiments using the model road made of impervious asphalt demonstrate a strong first flush phenomenon. At high rainfall intensity, approximately 80% of total pollutants were released within 15 min. The pollutant wash-off rates rapidly increase from 9 mm/hr to 12 mm/hr of rainfall intensity and decrease over 12 mm/hr of rainfall intensity.

Applicability Evaluation of FMCW Radar Detector on Signal Intersections (FMCW 레이더 검지기 신호교차로 적용성 평가)

  • Ko, Kwang-Yong;Kim, Min-Sung;Lee, Choul-Ki;Jeong, Jun-Ha;Heo, Nak-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Intrusive Vehicle Detectors have excellent detection performance compared to other types of detector, but disadvantages of high installation and maintenance costs, short life time due to greater damage to roads and paving materials. In contrast, Non-Intrusive Vehicle Detectors attached to the stationary pole have advantages because it does not damage the road surface and easy and less expensive to maintain. Despite these advantages, Non-Intrusive type detectors are still not been widely used in traffic signal control systems because of the low detection performance. In this study, a FMCW(Frequency Modulated Continuous Wave) radar Vehicle Detector was designed as an alternative detector for the signalized intersection, and the performance evaluation was presented by purpose applicability.

Development of 3-axis Road Simulator (3축 로드 시뮬레이터 개발)

  • Choi, G.R.;Jeon, S.B.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • The road simulators have become common tools within the automotive industry for evaluation of vehicle and vehicle system durability performance. These simulators need appropriate input signal generation algorithms to realize the actual driving conditions due to non-linear vehicle and test rig behaviour. Although somewhat unconventional from a control standpoint, the iteration approach has proven to be a very effective method for control of complex, multiple degree-of-freedom systems where the tracking parameter is known a priori. In this paper, the road profile replication algorithm is verified by applying Belgian road to the developed road simulator. The simulation and experimental results are included to evaluate the performance of this simulator. This road simulator provides considerable savings in cost, development time, and testing risk during developing automotive components.

  • PDF