• Title/Summary/Keyword: non-representation

Search Result 442, Processing Time 0.027 seconds

Parallel Modular Multiplication Algorithm to Improve Time and Space Complexity in Residue Number System (RNS상에서 시간 및 공간 복잡도 향상을 위한 병렬 모듈러 곱셈 알고리즘)

  • 박희주;김현성
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.9
    • /
    • pp.454-460
    • /
    • 2003
  • In this paper, we present a novel method of parallelization of the modular multiplication algorithm to improve time and space complexity on RNS (Residue Number System). The parallel algorithm executes modular reduction using new table lookup based reduction method. MRS (Mixed Radix number System) is used because algebraic comparison is difficult in RNS which has a non-weighted number representation. Conversion from residue number system to certain MRS is relatively fast in residue computer. Therefore magnitude comparison is easily Performed on MRS. By the analysis of the algorithm, it is known that it requires only 1/2 table size than previous approach. And it requires 0(ι) arithmetic operations using 2ㅣ processors.

Finite Element Modeling of a Piezoelectric Sensor Embedded in a Fluid-loaded Plate (유체와 접한 판재에 박힌 압전센서의 유한요소 모델링)

  • Kim, Jae-Hwan
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • The sensor response of a piezoelectric transducer embedded in a fluid loaded structure is modeled using a hybrid numerical approach. The structure is excited by an obliquely incident acoustic wave. Finite element modeling in the structure and fluid surrounding the transducer region, is used and a plane wave representation is exploited to match the displacement field at the mathematical boundary. On this boundary, continuity of field derivatives is enforced by using a penalty factor and to further achieve transparency at the mathematical boundary, drilling degrees of freedom (d.o.f.) are introduced to ensure continuity of all derivatives. Numerical results are presented for the sensor response and it is found that the sensor at that location is not only non-intrusive but also sensitive to the characteristic of the structure.

  • PDF

An Empirical Central Limit Theorem for the Kaplan-Meier Integral Process on [0,$\infty$)

  • Bae, Jong-Sig
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 1997
  • In this paper we investigate weak convergence of the intergral processes whose index set is the non-compact infinite time interval. Our first goal is to develop the empirical central limit theorem as random elements of [0, .infty.) for an integral process which is constructed from iid variables. In developing the weak convergence as random elements of D[0, .infty.), we will use a result of Ossiander(4) whose proof heavily depends on the total boundedness of the index set. Our next goal is to establish the empirical central limit theorem for the Kaplan-Meier integral process as random elements of D[0, .infty.). In achieving the the goal, we will use the above iid result, a representation of State(6) on the Kaplan-Meier integral, and a lemma on the uniform order of convergence. The first result, in some sense, generalizes the result of empirical central limit therem of Pollard(5) where the process is regarded as random elements of D[-.infty., .infty.] and the sample paths of limiting Gaussian process may jump. The second result generalizes the first result to random censorship model. The later also generalizes one dimensional central limit theorem of Stute(6) to a process version. These results may be used in the nonparametric statistical inference.

  • PDF

Modelling the shapes of the largest gravitationally bound objects

  • Rossi, Graziano;Sheth, Ravi K.;Tormen, Giuseppe
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • We combine the physics of the ellipsoidal collapse model with the excursion set theory to study the shapes of dark matter halos. In particular, we develop an analytic approximation to the nonlinear evolution that is more accurate than the Zeldovich approximation; we introduce a planar representation of halo axis ratios, which allows a concise and intuitive description of the dynamics of collapsing regions and allows one to relate the final shape of a halo to its initial shape; we provide simple physical explanations for some empirical fitting formulae obtained from numerical studies. Comparison with simulations is challenging, as there is no agreement about how to define a non-spherical gravitationally bound object. Nevertheless, we find that our model matches the conditional minor-to-intermediate axis ratio distribution rather well, although it disagrees with the numerical results in reproducing the minor-to-major axis ratio distribution. In particular, the mass dependence of the minor-to-major axis distribution appears to be the opposite to what is found in many previous numerical studies, where low-mass halos are preferentially more spherical than high-mass halos. In our model, the high-mass halos are predicted to be more spherical, consistent with results based on a more recent and elaborate halo finding algorithm, and with observations of the mass dependence of the shapes of early-type galaxies. We suggest that some of the disagreement with some previous numerical studies may be alleviated if we consider only isolated halos.

  • PDF

Dynamic Evaluation of Bridge Mounted Structures (교량상부에 부착된 구조물의 동적거동해석)

  • Kim, Dong-Joo;Lee, Wan-Soo;Yang, Jong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.324-327
    • /
    • 2011
  • The design requirement for ground mounted sign structures are fairly well defined in the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries, and Traffic Signals and consists of applying an equivalent pseudo-dynamic loading to account for the dynamic effects of wind loads and ignores the dynamic effect due to moving vehicle loads. This design approach, however, should not be applied to the design of bridge mounted sign structures because ignoring the dynamic effects of the moving vehicle loads may produce non-conservative results, since the stiffness of the bridge structure can greatly influence the behavior. Not enough information is available in the literatures which provide guide lines to include the influence of moving vehicles in the design of the bridge mounted sign structures. This paper describes a theoretical methodology, Bridge-Vehicle Interaction Element, which can be utilized to account for the dynamic effect of moving vehicles. A case study is also included where this methodology was successfully applied. It was concluded that the bridge-vehicle interaction finite element developed can provide a more accurate representation of the behavior of bridge mounted sign structures. The result of these analysis enabled development of simple and effective retrofitting scheme for the existing support system of bridge-mounted-structure.

  • PDF

NEUTRON-INDUCED CAVITATION TENSION METASTABLE PRESSURE THRESHOLDS OF LIQUID MIXTURES

  • Xu, Y.;Webster, J.A.;Lapinskas, J.;Taleyarkhan, R.P.
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.979-988
    • /
    • 2009
  • Tensioned metastable fluids provide a powerful means for low-cost, efficient detection of a wide range of nuclear particles with spectroscopic capabilities. Past work in this field has relied on one-component liquids. Pure liquids may provide very good detection capability in some aspects, such as low thresholds or large radiation interaction cross sections, but it is rare to find a liquid that is a perfect candidate on both counts. It was hypothesized that liquid mixtures could offer optimal benefits and present more options for advancement. However, not much is known about radiation-induced thermal-hydraulics involving destabilization of mixtures of tensioned metastable fluids. This paper presents results of experiments that assess key thermophysical properties of liquid mixtures governing fast neutron radiation-induced cavitation in liquid mixtures. Experiments were conducted by placing liquid mixtures of various proportions in tension metastable states using Purdue's centrifugally-tensioned metastable fluid detector (CTMFD) apparatus. Liquids chosen for this study covered a good representation of both thermal and fast neutron interaction cross sections, a range of cavitation onset thresholds and a range of thermophysical properties. Experiments were devised to measure the effective liquid mixture viscosity and surface tension. Neutron-induced tension metastability thresholds were found to vary non-linearly with mixture concentration; these thresholds varied linearly with surface tension and inversely with mixture vapor pressure (on a semi-log scale), and no visible trend with mixture viscosity nor with latent heat of vaporization.

Multichannel Quantum Defect Theory Analysis of Overlapping Resonance Structures in Lu-Fano Plots of Rare Gas Spectra

  • Lee, Chun-Woo;Kong, Ja-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1783-1792
    • /
    • 2009
  • Although overlapping resonances have been studied extensively in conventional resonance theories, there have not been many studies on them in multichannel quantum defect theories (MQDT). In MQDT, overlapping resonances occur between the channels instead of states, which pose far greater difficulty. Their systematic treatment was obtained for cases involving degenerate closed channels by applying our previous theory, which decouples background scattering from the resonance scattering in the MQDT formulation. The use of mathematical theory on con-diagonalization and con-similarity was essential for handling the non-Hermitian symmetric complex matrix. Overlapping resonances in rare gas spectra of Ar, Kr and Xe were analyzed using this theory and the results were compared with the ones of the previous alternative parameterizations of MQDT which make the open-open part $K^{oo}$ and closed-closed part $K^{cc}$ of reactance submatrices zero. The comparison revealed that separation of background and resonance scatterings achieved in our formulation in a systematic way was not achieved in the representation of $K^{oo}\;=\;0\;and\;K^{cc}$ = 0 when overlapping resonances are present.

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation

  • Kim, Jin-Wook;Kim, Soo-Jae;Ko, Hee-Dong;Terzopoulos, Demetri
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02c
    • /
    • pp.326-333
    • /
    • 2007
  • To simulate solid dynamics,a we must com-pute the mass, the center of mass, and the products of inertia about the axes of the body of interest. These mass property computations must be continuously re-peated for certain simulations with rigid bodies or as the shape of the body changes. We introduce a GPU-friendly algorithm to approximate the mass properties for an arbitrarily shaped body. Our algorithm converts the necessary volume integrals into surface integrals on a projected plane. It then maps the plane into a frame-buffer in order to perform the surface integrals rapidly on the GPU. To deal with non-convex shapes, we use a depth-peeling algorithm. Our approach is image-based; hence, it is not restricted by the mathematical or geometric representation of the body, which means that it can efficiently compute the mass properties of any object that can be rendered on the graphics hardware. We compare the speed and accuracy of our algorithm with an analytic algorithm, and demonstrate it in a hydrostatic buoyancy simulation for real-time applications, such as interactive games.

  • PDF

A Study of the Characteristics of the Space Realization based on Becoming thought in Contemporary Japanese Architecture - Focused on the Projects of SANAA, Ito Toyo, Sou Fujimoto - (일본 현대건축의 생성적 공간구현 특성 - SANAA, Ito Toyo, Sou Fujimoto의 사례를 중심으로 -)

  • Jeon, Hae-Ju;Kim, Dong-Jin
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.4
    • /
    • pp.72-82
    • /
    • 2014
  • The Contemporary paradigm to understand the complexity and diversity is moving to 'Becoming' that taken place in reviewing at the relation of various concepts. In Japan, After the collapse of modern architecture has been declared 'Metabolism' was appeared. They tried to apply organism's metabolic system to buildings based on ecological thoughts. But Metaboilsm's projects had revealed limitations of representation that the city on the mechanical system became a huge scale. As a result, It caused a break the cultural context of the region in Japan. After then, Japanese Architects expressed a pluralistic aspects of modern society for the restoration of disconnected cultural context. From this perspective, The thought of 'becoming' is a new role for Contemporary Japanese Architect. This research is focused of projects of SANAA, Ito Toyo, Sou Fujimoto, because they have spatial thought about realizing the space through the ways organizing the various potential possibilities in the simple external form not stimulated. They are realize the 'becoming-space' within the architecture. This 'becoming-space' gives people in building the new characteristics and experience that potential interactions among user, architecture and nature. It is non-representational space not fixed, but changing organically and variably.

Real-time Stabilization Method for Video acquired by Unmanned Aerial Vehicle (무인 항공기 촬영 동영상을 위한 실시간 안정화 기법)

  • Cho, Hyun-Tae;Bae, Hyo-Chul;Kim, Min-Uk;Yoon, Kyoungro
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Video from unmanned aerial vehicle (UAV) is influenced by natural environments due to the light-weight UAV, specifically by winds. Thus UAV's shaking movements make the video shaking. Objective of this paper is making a stabilized video by removing shakiness of video acquired by UAV. Stabilizer estimates camera's motion from calculation of optical flow between two successive frames. Estimated camera's movements have intended movements as well as unintended movements of shaking. Unintended movements are eliminated by smoothing process. Experimental results showed that our proposed method performs almost as good as the other off-line based stabilizer. However estimation of camera's movements, i.e., calculation of optical flow, becomes a bottleneck to the real-time stabilization. To solve this problem, we make parallel stabilizer making average 30 frames per second of stabilized video. Our proposed method can be used for the video acquired by UAV and also for the shaking video from non-professional users. The proposed method can also be used in any other fields which require object tracking, or accurate image analysis/representation.