• Title/Summary/Keyword: non-real-time

Search Result 1,840, Processing Time 0.036 seconds

PROFIBUS에서 대역폭 할당 기법 구현

  • 김지용;홍승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.97-100
    • /
    • 1997
  • Fieldbuses are used as the lowest level communication network for real-time communication in factory automation and process control systems. Data generated from field devices can be divided into three categories: sporadic real-time, periodic real-time and non real-time data. Since these data share one fieldbus network medium, it needs a method that allocate the limited bandwidth of fieldbus network to the sporadic real-time, periodic real-time and non real-time traffic. This paper introduces an implementation method of bandwidth allocation scheme introduced in [51 on PROFIBUS. Using the modified PROFIBUS FDL(Fieldbus Data Link layer), the bandwidth allocation scheme introduced in [51 is verified by the experiments.

  • PDF

Method for Reduction of Power Consumption using Buffer Processing Time Control in Home Gateway (홈 게이트웨이에서 서비스 특성에 따른 버퍼 동작 시간 제어를 통한 전력 소비 감소 방안)

  • Yang, Hyeon;Yu, Gil-Sang;Kim, Yong-Woon;Choi, Seong-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.69-76
    • /
    • 2012
  • This paper proposes an efficient power consumption scheme using sleep mode in home gateway. The scheme by this paper classifies incoming real time packet and non-real time packet in home gateway and delay non-real time packet. Therefore, the home gateway can have longer sleep time because non-real time packet can get additional delay time by proposing mechanism using timer. We use non-preemptive two priority queueing model for performance analysis. As a results, we verify that power consumption of proposed scheme is reduced more than existing scheme by delay of non-real time traffic.

A Study on Real Time and Non-real Time Traffic Multiplexing with Congestion Control (폭주제어를 포함한 실시간 및 비실시간 트래픽의 다중화에 관한 연구)

  • 송관호;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.750-760
    • /
    • 1994
  • In this paper we proposed a multiplexing scheme of real time and non-real traffics in which a congestion control is embedded. Real time traffics are assumed to be nonqueuable and have preemptive priority over non-real time traffics in seizing the common output link, whereas the non-real time traffics wait in the common buffer if the output link is not available for transmission. Real time traffics are encoded according to the bandwidth reduction strategy, paticularly when congestion occurs among non-real time traffics. This scheme provides us an efficient way for utilizing the costly bandwidth resources, by accommodation as many real time traffics as possible with gauranteeing its mimimum bandwidth requirements, and also resloving the congestion encountered among non-real time traffics. We describe the system as a Markov queueing system, provide the analysis by exploiting the matrix geometric method, and present the performance for various performance measures of interest. Some numerical results are also provided.

  • PDF

A transmit function implementation of wireless LAN MAC with QoS using single transmit FIFO (단일 송신 피포를 이용한 QoS 기능의 무선랜 MAC의 송신 기능 구현)

  • Park, Chan-Won;Kim, Jung-Sik;Kim, Bo-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.237-239
    • /
    • 2004
  • Wireless LAN Voice over IP(VoIP) equipment needs Quality-of-Service(QoS) with priority for processing real-time traffic. This paper shows transmit function implementation of wireless LAN(WLANs) media access control(MAC) support VoIP, and it has an advantage of guarantee of QoS and is adaptable to VoIP or mobile wireless equipment. The IEEE 802.11e standard in progress has four queues according to four access categories(AC) for transmit and the MAC transmits the data based on EDCA. The value of AC is from AC0 to AC3 and AC3 has the highest priority. The transmit method implemented at this paper ensure QoS using one transmit FIFO in hardware since real-time traffic data and non real-time traffic data has the different priority. The device driver classifies real-time data and non real-time data and transmit data to hardware with information about data type. The hardware conducts shorter backoff and selects faster AIFS slot for real-time data than it for non real-time data. Therefor It make give the real-time traffic data faster channel access chance than non real-time data and enhances QoS.

  • PDF

Management and control of fieldbus network traffic by bandwidth allocation scheme (대역폭 할당 기법에 의한 필드버스 네트워크의 트래픽 관리 및 제어)

  • Hong, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.77-88
    • /
    • 1997
  • Fieldbus is the lowest level communication network in factory automation and process control systems. Performance of factory automation and process control systems is directly affected by the data delay induced by network traffic. Data generated from several distributed field devices can be largely divided into three categories: sporadic real-time, periodic real-time and non real-time data. Since these data share one fieldbus network medium, the limited bandwidth of a fieldbus network must be appropriately allocated to the sporadic real-time, periodic real-time and non real-time traffic. This paper introduces a new fieldbus design scheme which allocates the limited bandwidth of fieldbus network to several different kinds of traffic. The design scheme introduced in this study not only satisfies the performance requirements of application systems interconnected into the fieldbus but also fully utilizes the network resources. The design scheme introduced in this study can be applicable to cyclic service protocols operated under single-service discipline. The bandwidth allocation scheme introduced in this study is verified using a discrete-event/continuous-time simulation experiment.

  • PDF

Survey Research for Evaluation of Real-time Non-face-to-face Medical Education in Clinical Korean Medicine (임상한의학 실시간 비대면교육의 평가를 위한 설문조사 연구)

  • Yang, Seung-Bo
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.984-992
    • /
    • 2020
  • Objectives: This survey research was conducted to evaluate real-time non-face-to-face education in clinical Korean medicine conducted during the COVID-19 outbreak. Methods: This study was conducted with all 3rd and 4th grade students of the Department of Korean Medicine, Gachon University. The Korean Internal Medicine (Pulmonary) lecture course was held from April 1st to July 1st, 2020 for one semester. The lectures were conducted through real-time non-face-to-face education using the Cisco Webex program, and the lectures were mainly conducted by sharing a PowerPoint summarizing textbook. The questionnaire consisted of 3 parts and a total of 18 questions. The survey was conducted anonymously to ensure the confidentiality of all responses. Results: The overall score for real-time non-face-to-face education was 74.69±18.15 points. The efficiency of real-time non-face-to-face education was 2.12±0.78 points, and opinions on the expansion of future use were 2.08±0.91 points and were generally positive. The ratio of non-face-to-face education and face-to-face education in future clinical Korean medicine theory lectures was about 63:27, with a higher proportion of non-face-to-face education. Conclusions: Promoting clinical Korean medicine as a non-face-to-face education has generally been positively evaluated in terms of efficiency and overall, and its use should be expanded in the future. In particular, it will be necessary to use non-face-to-face education in the theory classes of clinical Korean medicine. However, technical problems involving internet, video, equipment, and communication tools will need to be improved in the future.

A Dynamic Backoff Adjustment Method of IEEE 802.15.4 Networks for Real-Time Sporadic Data Transmission (비주기적 실시간 데이터 전송을 위한 IEEE 802.15.4 망의 동적 백오프 조정 기법에 대한 연구)

  • Lee, Jung-Il;Kim, Dong-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.318-325
    • /
    • 2008
  • In this paper, a dynamic backoff adjustment method of IEEE 802.15.4 is proposed for time-critical sporadic data in a noisy factory environment. For this, a superframe of IEEE 802.15.4 is applied to a real-time mixed data (periodic data, sporadic data, and non real-time message) transmission in factory communication systems. To guarantee a channel access of real-time sporadic(non-periodic) data, a transmission method using the dynamic backoff is applied to wireless control networks. For the real-time property, different initial BE, CW parameters are used for the dynamic backoff adjustment method. The simulat-ion results show an enhancement of the real-time performance of sporadic emergency data. The proposed method provides the channel access of real-time sporadic data efficiently, and guarantee real-time transmission simultaneously within a limite-d timeframe.

Development of an Extended EDS(Earliest Deadline Scheduling) Algorithm for the CAN-Based Real-Time System (CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발)

  • Lee, Byong-Hoon;Kim, Hong-Ryeol;Kim , Dae-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.7
    • /
    • pp.294-301
    • /
    • 2002
  • A new dynamic scheduling algorithm is proposed for CAN-based real-time system in this paper. The proposed algorithm is extended from an existing EDS(Earliest Deadline Scheduling) approach having a solution to the priority inversion. Using the proposed algorithm, the available bandwidth of network media can be checked dynamically, and consequently arbitration delay causing the miss of deadline can be avoided. Also, non-real time messages can be processed with their bandwidth allocation. Full network utilization and real-time transmission feasibility can be achieved through the algorithm. To evaluate the performance of algorithm, two simulation tests are performed. The first one is transmission data measurement per minute for periodic messages and the second one is feasibility in the system with both periodic messages and non-real time message.

A Systems Engineering Approach to Real-Time Data Communication Network for the APR1400

  • Ibrahim, Ahmad Salah;Jung, Jae-cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 2017
  • Concept development of a real-time Field Programmable Gate Array (FPGA)-based switched Ethernet data communication network for the Man-Machine Interface System (MMIS) is presented in this paper. The proposed design discussed in this research is based on the systems engineering (SE) approach. The design methodology is effectively developed by defining the concept development stage of the life-cycle model consisting of three successive phases, which are developed and discussed: needs analysis; concept exploration; and concept definition. This life-cycle model is used to develop an FPGA-based time-triggered Ethernet (TTE) switched data communication network for the non-safety division of MMIS system to provide real-time data transfer from the safety control systems to the non-safety division of MMIS and between the non-safety systems including control, monitoring, and information display systems. The original IEEE standard 802.3 Ethernet networks were not typically designed or implemented for providing real-time data transmission, however implementing a network that provides both real-time and on-demand data transmission is achievable using the real-time Ethernet technology. To develop the design effectively, context diagrams are implied. Conformance to the stakeholders needs, system requirements, and relevant codes and standards together with utilizing the TTE technology are used to analyze, synthesize, and develop the MMIS non-safety data communication network of the APR1400 nuclear power plant.

Kernel Thread Scheduling in Real-Time Linux for Wearable Computers

  • Kang, Dong-Wook;Lee, Woo-Joong;Park, Chan-Ik
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.270-280
    • /
    • 2007
  • In Linux, real-time tasks are supported by separating real-time task priorities from non-real-time task priorities. However, this separation of priority ranges may not be effective when real-time tasks make the system calls that are taken care of by the kernel threads. Thus, Linux is considered a soft real-time system. Moreover, kernel threads are configured to have static priorities for throughputs. The static assignment of priorities to kernel threads causes trouble for real-time tasks when real-time tasks require kernel threads to be invoked to handle the system calls because kernel threads do not discriminate between real-time and non-real-time tasks. We present a dynamic kernel thread scheduling mechanism with weighted average priority inheritance protocol (PIP), a variation of the PIP. The scheduling algorithm assigns proper priorities to kernel threads at runtime by monitoring the activities of user-level real-time tasks. Experimental results show that the algorithms can greatly improve the unexpected execution latency of real-time tasks.

  • PDF