• Title/Summary/Keyword: non-real time process

Search Result 244, Processing Time 0.024 seconds

Improvement of CMP and Cleaning Process of Large Size OLED LTPS Thin Film Using Oscar Type Polisher (Oscar형 연마기를 이용한 대면적 OLED용 LTPS 박막의 CMP 처리 및 세정 공정 개선)

  • Shim, Gowoon;Lee, Hyuntaek;Song, Jongkook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.71-76
    • /
    • 2022
  • We evaluated and developed a 6th generation large-size polisher in the type of face-up and Oscar. We removed the hillocks of the low temperature poly-silicon (LTPS) thin film with this polisher. The surface roughness of LTPS was lowered from 7.9 nm to 0.6 nm after CMP(chemical mechanical polishing). The thickness of the LTPS is measured through reflectance in real time during polishing, and the polishing process is completed according to this thickness. The within glass non-uniformity (WIGNU) was 6.2% and the glass-to-glass non-uniformity (GTGNU) was 2.5%, targeting the LTPS thickness of 400Å. In addition, the residual slurry after the CMP process was removed through the Core Flow PVA Brush and alkaline chemical.

End-to-End Scheduling Method Considering 3-type RT-Data in Distributed Control Systems (분산 제어시스템에서 3가지 형태의 실시간 데이터를 고려하는 양극단 스케줄링 방법)

  • Kim, Hyoung-Yuk;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.311-314
    • /
    • 2003
  • In recent years, distributed control systems(DCS) using fieldbus such as CAN have been applied to process systems but it is very difficult to design the DCS while guaranteeing the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints considering aperiodic, periodic and non-real-time message and task simultaneously. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of sensor nodes with multiple sensors, actuator nodes with multiple actuators and controller nodes with multiple tasks.

  • PDF

Fire detection in video surveillance and monitoring system using Hidden Markov Models (영상감시시스템에서 은닉마코프모델을 이용한 불검출 방법)

  • Zhu, Teng;Kim, Jeong-Hyun;Kang, Dong-Joong;Kim, Min-Sung;Lee, Ju-Seoup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.35-38
    • /
    • 2009
  • The paper presents an effective method to detect fire in video surveillance and monitoring system. The main contribution of this work is that we successfully use the Hidden Markov Models in the process of detecting the fire with a few preprocessing steps. First, the moving pixels detected from image difference, the color values obtained from the fire flames, and their pixels clustering are applied to obtain the image regions labeled as fire candidates; secondly, utilizing massive training data, including fire videos and non-fire videos, creates the Hidden Markov Models of fire and non-fire, which are used to make the final decision that whether the frame of the real-time video has fire or not in both temporal and spatial analysis. Experimental results demonstrate that it is not only robust but also has a very low false alarm rate, furthermore, on the ground that the HMM training which takes up the most time of our whole procedure is off-line calculated, the real-time detection and alarm can be well implemented when compared with the other existing methods.

Effect of Viscosity Variation on Flow Characteristic in Thixoforming Process of Semi-Solid Aluminium Alloys (반용융 알루미늄 합금의 Thixoforming 공정에서 점도의 변화가 유도특성에 미치는 영향)

  • 강충길;이유철
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.188-199
    • /
    • 1999
  • Semi-Solid Forming Process(Thixoforming, Rheocasting) is a novel forming process which has some advantages compared with conventional die casting, squeeze casting and hot/cold forging. In this study. Thixoforming process was selected as analysis processing in terms of billet handling and easiness of automation process. The Thixoforming process consists of reheating process of billet, billet handling, filling inot the die cavity and solidification of SSM part. In filling process, two rheology models which were Newtonian and Non-Nettonian model (Ostwald-deWaele)were verified with experimental results. The Ostwald-deWaele model shows the good agreement to the real flow and filling phenomena in die cavity. To give a boost the economical efficiency of Thixoforming process and to ensure the good forming result, reheating device coupled die set was proposed and the initial billet temperature for system that was found from experimental resluts. This study presents an overview of application of numerical analysis for simulation of semi-solid metal forming process to reduce the lead time for development of manufacturing part in industrial field.

  • PDF

Development of Automated Non-contact Thickness Measurement Machine using a Laser Sensor (레이저센서를 이용한 비접촉식 두께자동측정기 개발)

  • Cho, Kyung-Chul;Kim, Soo-Youn;Shin, Ki-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.51-58
    • /
    • 2015
  • In this study, we developed an automated non-contact thickness measurement machine that continuously and precisely measures the thickness and warp of a PCB product using a laser sensor. The system contains a measurement part to measure the thickness in real time automatically according to the set conditions with an alignment supply unit and unloading unit to separate OK and NG products. The measurement machine was utilized to evaluate the performance at each step to minimize measurement error. At the zero setting for the initial setup, the standard deviation of the 216 samples was determined to be $5.52{\mu}m$. A measurement error of 0.5mm and 1.0mm as a standard sample in the measurement accuracy assessment was found to be 2.48% and 2.28%, respectively. In the factory acceptance test, the standard deviation of 1.461mm PCB was measured as $28.99{\mu}m$, with a $C_{pk}$ of 1.2. The automatic thickness measurement machine developed in this study can contribute to productivity and quality improvement in the mass production process.

A study of the system that enables real-time contact confirmation of probes in OLED panel inspection (OLED Panel 검사 시에 Probe의 실시간 Contact 확인 가능한 시스템에 관한 연구)

  • Hwang, Mi-Sub;Han, Bong-Seok;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Park, Kyu-Bag;Lee, Jeong-woo;Kim, Ji-Hun
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.21-27
    • /
    • 2020
  • Recently, LCD (Liquid Crystal Display) has been replaced by OLDE (Organic Light Emitting Diode) in high resolution display industry. In the process of OLDE production, it inspects defective products by sending a signal using a probe during OLED panel inspection. At this time, the cause of the detection of failure is divided into two. One is the self-defect of the OLED panel and the other is the poor contact occurring in the process of contact between the two. The second case is unknown at the time of testing, which increases the time for retesting. To this end, we made a system that can identify in real time whether the probe is in contact during the inspection. A contact probe unit was designed for the system, and a stage system was implemented. An inspection system was constructed through S / W and circuit configuration for actual inspection. Finally, a system that can check contact and non-contact in real time was constructed.

Nonlinear Observer flay Applications of Fermentation Process in Stirred Tank Bioreactor

  • Kim, Hak-Kyeong;Nguyen, Tan-Tien;Kim, Sang-Bong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.244-250
    • /
    • 2002
  • This paper proposed a modified observer based on Busawon's high gain observer using an appropriate time depended function, which can be chosen to make each estimated state converge faster to its real value. The stability of the modified observer is proved by using Lyapunov function. The modified nonlinear observer is applied to estimate the states in stirred tank bioreactor: out-put substrate concentration, output biomass concentration and the specific growth rate of the process. The convergences of the modified observer and Busawon's observer are compared trough simulation results. As the results, the modified observer converges faster to its real value than the well-known Busawon's observer.

A Novel Non-contact Heart Rate Estimation Algorithm and System with User Identification

  • Kim, Chan-Il;Kim, Hyung-Jin;Kim, Seon-Chil;Park, Hee-Jun;Lee, Jong-ha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.395-402
    • /
    • 2016
  • In these days, the wearable devices have been developed for measuring biological data effectively. However, wearable devices have tissue allege and noise problem. Also, it is impossible for a remote center to identify the person whose data are measured by wearable devices, which could trigger a communication problem over treatment. To solve these problems, biometric measurement based on a non-contact method, such as face image sequencing is necessary. This makes it possible to measure biometric data without any operation and side effects. This system can monitor the biological signals of people in real time without allege and noise and simultaneously identify them. In this paper, we propose an authentication process while measuring biometric data, through a non-contact method.

System identification and admittance model-based nanodynamic control of ultra-precision cutting process (다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.