• 제목/요약/키워드: non-pretreatment

검색결과 301건 처리시간 0.031초

갈조류 미역(Undaria pinnatifida)의 분리당화발효와 다양한 효모를 이용한 바이오에탄올의 생산 (Bioethanol Production from Seaweed Undaria pinnatifida Using Various Yeasts by Separate Hydrolysis and Fermentation (SHF))

  • 웬트룽 하우;라채훈;박미라;정귀택;김성구
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.529-534
    • /
    • 2016
  • 해조류 중 갈조류인 미역으로부터 분리당화발효(SHF)를 위한 전처리 및 효소당화를 검토하고, 기존의 분리당화발효(SHF)를 개선하기 위해 공배양발효(co-culture)를 수행하였다. 비순치 효모와 고농도 mannitol에 순치(adaptive evolution)한 효모를 이용한 공배양발효를 실시한 결과 발효 72시간에 12.2 g/l의 에탄올과 에탄올 수율($Y_{EtOH}$) 0.41을 나타내었다. 이러한 기존의 분리당화발효(SHF)를 개선한 공배양발효를 통해 에탄올 생산 수율이 0.23에서 0.41로 35.2% 증가하였으며, 에탄올 발효시간도 108시간에서 72시간으로 33.3% 감소하였다. 이러한 연구결과는 해양 바이오매스인 해조류로부터 바이오연료 생산과정에 있어 유용한 정보를 제공하는 것으로 판단된다.

Electrophysiological Responses of ${\delta}-Opioid$ Receptor Expressed on HEK293 Cells

  • Kim, Jin-Hyuk;Koh, Young-Ik;Chin, He-Min;Lee, Yong-Sung;Cho, Yeul-Hee;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.301-307
    • /
    • 1995
  • To explore electrophysiological properties of the ${\delta}-Opioid$ receptors artificially expressed in the mammalian cell, effect of an opioid agonist DPDPE $(1\;{\mu}M)$ on the voltage-sensitive outward currents was examined in the HEK293 (human embryonic kidney) cells transfected with ${\delta}-Opioid$ receptor cDNA cloned from NG-108-15 $(neuroblastoma\;{\times}\;glioma\;hybrid)$ cDNA library. Also studied were effects of 8-bromo-cyclic AMP and naloxone on DPDPE-induced changes in the voltage sensitive outward current. The voltage sensitive outward currents were recorded using perforated patch technique at room temperature. In the non-transformed HEK293 cells, DPDPE did not alter voltage sensitive outward current, indicating that no native ${\delta}-Opioid$ receptor had been developed. However, $(1\;{\mu}M)$ DPDPE remarkably increased the voltage sensitive outward current in the transformed HEK293 cells. The increment in voltage sensitive outward current peaked in $7{\sim}10\;minutes$ after DPDPE application, and the maximum DPDPE-activated outward current $(313.1{\pm}12.3\;pA)$ was recorded when the membrane potential was depolarized to +70mv. Following pretreatment of the transformed HEK293 cells with 1 mM 8-bromo-cyclic AMP, DPDPE failed to increase the voltage sensitive outward currents. On the other hand, naloxone completely abolished DPDPE-activated voltage sensitive outward current in the transformed HEK293 cells. The results of present study suggest that in the transformed HEK293 cells an activation of the ${\delta}-Opioid$ receptors by an opioid agonist DPDPE increases the voltage-sensitive potassium current as a result of decrement in cyclic AMP level.

  • PDF

위 이형성 상피 병변의 클론성에 대한 분자병리학적 연구 (Clonality Assay of Dysplastic Epithelial Lesions of the Stomach)

  • 최호수;김미숙;박재우;박창수;김영진;정상우
    • Journal of Gastric Cancer
    • /
    • 제1권3호
    • /
    • pp.129-135
    • /
    • 2001
  • Purpose: Dysplasia or flat adenoma of the stomach is regarded as a precancerous lesion. However, the frequency and the evolutionary process of malignant transformation of gastric dysplasia are still debated. In order to see whether the lesion was a monoclonal or a polyclonal proliferation, clonality was assayed by X-linked HUMARA polymorphism. Materials and Methods: DNA was extracted from the paraffin-embedded tissue of 16 consecutive cases of endoscopic biopsy, eight of which supplied both dysplastic and nondysplastic tissue for comparison. HUMARA was amplified by PCR with or without pretreatment with methylationsensitive restriction enzyme, HpaII. The amplification products were electrophoresed on polyacrylamide gel and silver-stained. Results: Among the 16 cases, 13 cases were informative and 3 cases noninformative. Of the 13 cases, one case showed skewed lyonization, rendering 12 cases to be analyzed further. A monoclonal band pattern was noted in 2 cases, and a polyclonal band pattern in 10 cases. A review of the histopathologies of the monoclonal and the polyclonal cases did not reveal features discriminating the two groups. Conclusion: These results suggest that gastric dysplasia is a disease entity heterogeneous in the genetic level, and many cases may be non-neoplastic.

  • PDF

비만유도 흰쥐에 대한 방풍통성산가미방 (防風通聖散加味方)의 항고지혈 효과 및 항산화 효과 (Hypolipidemic and Antioxidative Effects of Bangpoongtongsungsankamibang on Diet-Induced Obesity Rats)

  • 정승희;이경태;안홍식;이진용;최종원;김덕곤
    • 생약학회지
    • /
    • 제37권3호
    • /
    • pp.190-195
    • /
    • 2006
  • Obesity is associated with a number of pathological disorders such as non-insulin-dependent diabetes, hypertension, hyperlipidemia, and cardiovascular diseases. Bangpoongtongsungsankamibang (BTSK) has been widely used in the oriental medicine for the treatment of several diseases associated with inflammatory abnormalities in cardiovascular and nervous system. The BTSK is the modified prescription of Bangpoongtongsungsankamibang in which sea tangle (Laminaria japonica) were added. This study was carried out to detemine the anti-obestic effects of BTSK. Pretreatment with the BTSK at daily dose of 100 or 200 mg/kg (p.o.) far 4 weeks reduced serum triglyceride, total cholesterol contents in rat induced by Poloxamer-407 or Triton WR-1339, respectively. Furthermore, post-treatment with BTSK far four weeks also inhibited body weight gain, adipose tissue mass and hyperlipidemia induced by the high fat diet for six weeks. The BTSK shifted serum total-, HDL- and LDL-cholesterol levels toward the values of normal group, suggesting that BTSK has hypolipldemlc effects. The rats fed BTSK reduced lipid peroxide and hydroxy radical in the rat blood and increased superoxide dismutase (SOD) activity compared to the control group. Taken together, these results superoxide that BTSK improve hyperlidemia and obesity via the upregulation of anti-oxidative mechanism.

종양세포의 사멸에 있어서의 activated protein C의 효과 (Effect of Activated Protein C (APC) on Apoptosis of Cancer Cells)

  • 민경진;배종섭;권택규
    • 생명과학회지
    • /
    • 제22권5호
    • /
    • pp.697-701
    • /
    • 2012
  • 본 연구에서는 항응고제로서의 역할을 가지면서 또한 혈액응고와는 관련 없는 종양세포의 전이 등을 조절하는 것으로 알려진 activated protein C (APC)가 종양세포의 사멸에는 어떠한 영향을 미치는 지에 대한 연구를 수행하였다. Tumor necrosis factor (TNF)-${\alpha}$와 cyclohexamide를 병합 처리하거나 FAS를 처리하게 되면 인간 신장암세포인 Caki에서는 유의적인 세포사멸이 일어난다. 하지만, APC는 이러한 세포사멸에 아무런 영향을 미치지 못하였다. 또한 TRAIL을 인간 뇌 암세포인 T98G와 유방암세포인 MDA231세포에 처리하여 세포사멸을 일으켰을 때에도 APC는 세포사멸을 조절하지 못하였다. 그러나, TRAIL에 대한 민감도를 증가시키기 위한 kahweol과 TRAIL의 병합처리나, kahweol과 malatonin의 병합처리에 의한 신장암세포의 사멸은 APC에 의해 유의적으로 억제되는 것을 확인하였다. 따라서, 이는 APC가 항암치료의 효율성을 조절 할 수 있는 가능성을 가짐을 의미한다.

다환방향족탄화수소에 대한 오존처리의 방법에 관한 연구 (A Study on the Degradation of PAH in Organic and Aqueous Phases by Ozone)

  • 최영익;손희종;정철우
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1123-1129
    • /
    • 2006
  • 대부분의 polycyclic aromatic hydrocarbons (PAHs) 은 최우선 오염물질로 간주되어지고 있는 매우 유독한 물질이다. Pyrene은 PAHs들 중에서도 그 유독성은 가히 심각하다. 그리고 Pyrene과 다른 PAHs화합물들은 물에 잘 용해가 되지 않는 소수성 성질을 가지고 있어 화학적 또는 생물학적 분해가 용이하지 않다. 이러한 성질을 극복하기 위하여 본 연구에서는 Pyrene을 대표 물질로 하여 2 단계 오존처리를 하였다. 첫 단계에서 Pyrene을 무극성인 핵산 용매에 대량 (2000 mg/L) 으로 녹여 오존처리를 하였다. 이때 Pyrene은 극성 분자들, 즉 알콜과 알데하이드 그리고 에시드 기능기를 가지는 물질들로 변화되었으며 이 변화된 물질들을 다시 극성 용매, 물에 녹여 두 번째 오존처리를 하였다. 두 번째 오존 처리된 Pyrene의 부산물들과 중간생성물들은 생물학적 처리로 가능한지 연구되어지기 위해 $BOD_5$와 COD 그리고 E-coli toxicity tests가 이루어졌다. 그 결과 오존 처리된 Pyrene은 유독하지도 않았고 Pyrene의 부산물들과 중간생성물들은 생물학적 처리가 용이하여졌다. Gas chromatograph (GC) 분석을 통해 Pyrene의 부산물들과 중간생성물들을 밝혀내었다. 이 연구를 토대로 소수성 성질을 가지는 많은 방향족 물질들을 처리하기가 매우 용이해졌다.

Treatment with a Small Synthetic Compound, KMU-193, induces Apoptosis in A549 Human Lung Carcinoma Cells through p53 Up-Regulation

  • Choi, Eun Young;Shin, Kyeong-Cheol;Lee, Jinho;Kwon, Taeg Kyu;Kim, Shin;Park, Jong-Wook
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5883-5887
    • /
    • 2015
  • Despite recent advances in therapeutic strategies for lung cancer, mortality still is increasing. In the present study, we investigated the anti-cancer effects of KMU-193, 2-(4-Ethoxy-phenyl)-N-{5-[2-fluoro-4-(4-methylpiperazine-1-carbonyl)-phenylamino]-1H-indazol-3-yl}-acetamide in a human non-small cell lung cancer cell line A549. KMU-193 strongly inhibited the proliferation of A549 cells, but it did not have anti-proliferative effect in other types of cancer cell lines. KMU-193 further induced apoptosis in association with activation of caspase-3 and cleavage of PLC-${\gamma}1$. However, KMU-193 had no apoptotic effect in untransformed cells such as TMCK-1 and BEAS-2B. Interestingly, pretreatment with z-VAD-fmk, a pan-caspase inhibitor, strongly abrogated KMU-193-induced apoptosis. KMU-193 treatment enhanced the expression levels of p53 and PUMA. Importantly, p53 siRNA transfection attenuated KMU-193-induced apoptosis. Collectively, these results for the first time demonstrate that KMU-193 has strong apoptotic effects on A549 cells and these are largely mediated through caspase-3- and p53-dependent pathways.

Protective effect of p53 in vascular smooth muscle cells against nitric oxide-induced apoptosis is mediated by up-regulation of heme oxygenase-2

  • Kim, Young-Myeong;Choi, Byung-Min;Kim, Yong-Seok;Kwon, Young-Guen;Kibbe, Melina R.;Billiar, Timothy R.;Tzeng, Edith
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.164-169
    • /
    • 2008
  • The tumor suppressor gene p53 regulates apoptotic cell death and the cell cycle. In this study, we investigated the role of p53 in nitric oxide (NO)-induced apoptosis in vascular smooth muscle cells (VSMCs). We found that the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) increased apoptotic cell death in p53-deficient VSMCs compared with wild-type cells. The heme oxygen-ase (HO) inhibitor tin protoporphyrin IX reduced the resistance of wild-type VSMCs to SNAP-induced cell death. SNAP promoted HO-1 expression in both cell types. HO-2 protein was increased only in wild-type VSMCs following SNAP treatment; however, similar levels of HO-2 mRNA were detected in both cell types. SNAP significantly increased the levels of non-heme-iron and dinitrosyl iron-sulfur clusters in wild-type VSMCs compared with p53-deficient VSMCs. Moreover, pretreatment with FeSO4 and the carbon monoxide donor CORM-2, but not biliverdin, significantly protected p53-deficient cells from SNAP-induced cell death compared with normal cells. These results suggest that wild-type VSMCs are more resistant to NO-mediated apoptosis than p53-deficient VSMCs through p53-dependent up-regulation of HO-2.

Vasoactive Intestinal Polypeptide Inhibits Pacemaker Activity via the Nitric Oxide-cGMP-Protein Kinase G Pathway in the Interstitial Cells of Cajal of the Murine Small Intestine

  • Kim, Byung Joo;Lee, Jae Hwa;Jun, Jae Yeoul;Chang, In Youb;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.337-342
    • /
    • 2006
  • Interstitial cells of Cajal (ICCs) are pacemaker cells that activate the periodic spontaneous depolarization (pacemaker potentials) responsible for the production of slow waves in gastrointestinal smooth muscle. The effects of vasoactive intestinal polypeptide (VIP) on the pacemaker potentials in cultured ICCs from murine small intestine were investigated by whole-cell patch-clamp techniques. Addition of VIP (50 nM-$1{\mu}M$) decreased the amplitude of pacemaker potentials and depolarized resting membrane potentials. To examine the type of receptors involved in ICC, we examined the effects of the $VIP_1$ agonist and found that it had no effect on pacemaker potentials. Pretreatment with $VIP_1$ antagonist ($1{\mu}M$) for 10 min also did not block the VIP (50 nM)-induced effects. On the other hand exposure to 1H-(1,2,4)oxadiazolo(4,3-A)quinoxalin-1-one (ODQ, $100{\mu}M$), an inhibitor of guanylate cyclase, prevented VIP inhibition of pacemaker potentials. Similarly KT-5823 ($1{\mu}M$) or RP-8-CPT-cGMPS ($10{\mu}M$), inhibitors of protein kinase G (PKG) blocked the effect of VIP (50 nM) on pacemaker potentials as did N-nitro-L-arginine (L-NA, $100{\mu}M$), a non-selective nitric oxide synthase (NOS) inhibitor. These results imply that the inhibition of pacemaker activity by VIP depends on the NO-cGMP-PKG pathway.

β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

  • Kim, Yeong Chae;Kim, Yeon Hwa;Lee, Young Hee;Lee, Sang Woo;Chae, Yun-Soek;Kang, Hyun-Kyung;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.305-316
    • /
    • 2013
  • Non-protein amino acid, ${\beta}$-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.