• Title/Summary/Keyword: non-point and point source

Search Result 683, Processing Time 0.027 seconds

A Study on the Discharge Characteristics of Non-point Pollutant Source in the Agricultural Area of the Kyongan Watershed (경안천 유역 농촌지역의 비점오염원 배출 특성에 관한 연구)

  • Lee, Byung-Soo;Jung, Yong-jun;Park, Moo Jong;Gil, Kyung-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.169-173
    • /
    • 2008
  • A field monitoring was conducted in order to find out the discharge characteristics of non-point source pollutants in the agricultural area. Event Mean Concentration (EMC) of TSS, $BOD_5$, $COD_{Mn}$, TP, TN was calculated based on the monitoring data of 10 rainfall events at agricultural watersheds. A significant relationship was observed from the correlation between EMCs and rainfall characteristics. The result shows that EMC ranges of 95% confidence intervals were 50.5~203 mg/L for TSS, 0.8~14.2 mg/L for $BOD_5$, 4.2~20.7 mg/L for $COD_{Mn}$, 2.4~4.5 mg/L for TN and 0.2~0.5 mg/L for TP, respectively. The correlation coefficients between TSS and TP and between $BOD_5$ and $COD_{Mn}$ were found to be 0.912 and 0.961. But TN was lower correlated with other EMC factors. It was also found that rainfall characteristics was not correlated with EMCs.

Application of GWLF Model to Predict Watershed Pollutant Loadings (오염부하량 산정을 위한 GWLF 모형의 적용)

  • Jang, Jung-Seok;Lee, Nam-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.1 s.13
    • /
    • pp.77-88
    • /
    • 2001
  • In order to evaluate the applicability of GWLF model which can efficiently estimate non-point and point source pollutant loadings in rural watershed including urban district, the model was applied to an experimental watershed. The model was calibrated using observed data such as daily runoffs, sediment yields, T-N, and T-P. Simulated daily runoffs and sediment yields by the model using calibrated parameters were in food agreement with the observed data. There were difference between the simulated and observed nutrient loading which was considered resonable. The simulated results by the model showed that T-N, T-P and sediment yields were dependent on the amount of stream runoff discharge and land use. GWLF model is believed to applicable to estimate amount of pollutant loading of non-point source pollution for the water qualify control of agricultural watersheds.

  • PDF

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

Impact of Non-point Source Runoff on Water Resource Quality according to Water-Level Changes (수위 변화에 따른 비점오염의 상수원 수질 영향 분석)

  • Choi, Mi-Jin;Lee, Sang-Hyeon
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1045-1053
    • /
    • 2015
  • This study evaluated the effect of water level of water resources on water quality in Ulsan. Two reservoirs, Sayeon Dam and Hoeya Dam, were selected and water quality of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were analyzed from 2012 to 2014. And the characteristics of precipitation were also analyzed for 70 years (1945~2014) because runoff of non-point pollutant was strongly affected by precipitation. As a result, water deterioration of Sayeon Dam and Hoeya Dam were affected in accordance with lowering water level. For example, the concentrations of COD and TN was negatively correlated with the water level when the water level of Sayeon Dam was gradually decreased in 2013. The TN concentration was increased to 1.432 mg/L from 0.875 mg/L while the lowest water level of Sayeon Dam was recorded 45 m in 2014. Additionally the concentration of COD and TN was sensitively increased with 0.213 mg/L/m and 0.058 mg/L/m on account of non-point pollutant runoff. It is indicated that hereafter a control of non-point pollutant runoff is the critical factors to maintain water resources because the contribution of non-point pollutant is expected to increase due to the frequent heavy rain events. Therefore, it is necessary to map out a specific plan for non-point pollutant control based on analyses of runoff characteristics, water pollution sources and reduction plans in water pollutants and to establish a water modelling and database system as a preventive action plan.

Efficiency Evaluation of Vegetative Filter Strip for Non-point Source Pollutant at Dense Upland Areas - Focused on Non-point Source Management Area Mandae, Gaa, and Jaun Basins - (고랭지밭 밀집지역 초생대의 비점오염 저감 효율 평가 - 비점오염원 관리지역을 중심으로 (만대지구, 가아지구, 자운지구) -)

  • Jeong, Yeonji;Lee, Dongjun;Kang, Hyunwoo;Jang, Won Seok;Hong, Jiyoung;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • A vegetative filter strip (VFS) is one of the best management practices (BMPs) to reduce pollutant loads. This study aims to assess the effectiveness of VFS in dense upland field areas. The study areas are agricultural fields in the Maedae (MD), Gaa (GA), and Jaun (JU) watersheds, where severe sediment yields have occurred and the Korean government has designated them as non-point management regions. The agricultural fields were divided into three or four clusters for each watershed based on their slope, slope length, and area (e.g., MD1, MD2). To assess the sediment trapping (STE) and pesticide reduction efficiency (PRE) of VFS, the Vegetative Filter Strip Modeling System (VFSMOD) was applied with three different scenarios (SC) (SC1: VFS with rye vegetation; SC2: VFS with rye vegetation and a gentle slope in VFS range; and SC3: VFS with grass mixture). For SC1, there were relatively short slope lengths and small areas in the MD1 and GA3 clusters, and they showed higher pollutant reduction (STE>50%, PRE>25%). For SC2 and SC3, all clusters in GA and some clusters (MD1 and MD3) in MD show higher pollutant reduction (>25%), while the uplands in JU still show a lower pollutant (<25%). With correlation analysis between geographic characteristics and VFS effectiveness slope and slope length showed relative higher correlations with the pollutant efficiency than a area. The results of this study implied that slope and slope length should be considered to find suitable upland conditions for VFS installations.

Cost Estimation and Validation based on Natural Language Requirement Specifications

  • So Young Moon;R. Young Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.218-226
    • /
    • 2023
  • In Korea, we still use function point based cost estimations for software size and cost of a project. The current problem is that we make difficultly calculating function points with requirements and also have less accurate. That is, it is difficult for non-experts to analyze requirements and calculate function point values with them, and even experts often derive different function points. In addition, all stakeholders strongly make the validity and accuracy of the function point values of the project before /after the development is completed. There are methods for performing function point analysis using source code [1][2][3][4] and some researchers [5][6][7] attempt empirical verification of function points about the estimated cost. There is no research on automatic cost validation with source code after the final development is completed. In this paper, we propose automatically how to calculate Function Points based on natural language requirements before development and prove FP calculation based on the final source code after development. We expect validation by comparing the function scores calculated by forward engineering and reverse engineering methods.

Development of a new system for measurement of total effluent load of water quality

  • Keiji, Takase;Akira, Ogura
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.221-221
    • /
    • 2015
  • Sustainable use of water resource and conservation of water quality are essential problems in the world. Especially, problems of water quality are serious one for human health as well as ecological system of all creatures on the earth. Recently, the importance of total effluent load as well as the concentrations of pollutant materials has been recognized not only for the conservation of water quality but also for sustainable water use in watersheds. However, the measurement or estimation of total effluent load from non-point source area such as farm lands or forests may be more difficult because both of concentration and discharge of the water are greatly changed depending on various factors especially metrological conditions such as rainfall, while the measurement from a point source area may be easy because the concentration of pollutant materials and amount of discharge water are relatively steady. Therefore, the total effluent load from a non-point source is often estimated by statistical relationships between concentration and discharge, which is called as L-Q equation. However, a lot of work and time are required to collect and analyze water samples and to get the accurate relationship or regressive equation. So, we proposed a new system for direct measurement of total effluent load of water quality from non-point source areas to solve the problem. In this system, the overflow depth at a hydraulic weir is measured with a pressure gage every hourly interval to calculate the amount of hourly discharge at first. Then, the operating time of a small electric pump to collect an amount of water which is proportional to the discharge is calculated to intake the water into a storage tank. The stored water is taken out a few days later in a case of storm event or several weeks later in a case of non-rainfall event and the concentrations of water quality such as total nitrogen and phosphorous are analyzed in a laboratory. Finally, total load of the water quality can be calculated by multiplying the concentration by the total volume of discharge. The system was installed in a small experimental forestry watershed to check the performance and know the total load of water quality from the forest. It was found that the system to collect a proportional amount of water to actual discharge operated perfectly and a total load of water quality was analyzed accurately. As the result, it was expected that the system will be very available to know the total load from a non-point source area.

  • PDF

Study on 3 Dimensional Images Using LED by PLS with No Viewing Zone Forming Optics (LED를 PLS 배열로 사용한 시역 형성 광학계가 없는 3차원 영상의 시역에 대한 연구)

  • Choi, Kyu-Hwan;Kim, Sung-Kyu;Son, Jung-Young
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.116-121
    • /
    • 2008
  • A two dimensional point light source array can replace both the viewing zone forming optics and the back light panel in the contact-type 3 dimensional imaging systems based on LC panels. This replacement can make the system structure of the 3 dimensional imaging systems no different from that of the conventional LCD and can reduce undesirable visual effects caused by the viewing zone forming optics. The problem with the point light source array is the visual quality deterioration of the system due to the non-ideal nature of the array.

Watershed Management Measures for Water Quality Conservation of the Hwaseong Reservoir using BASINS/HSPF Model (BASINS/HSPF 모델을 이용한 화성호 수질보전을 위한 상류 유역 수질개선방안 연구)

  • Kang, Hyeongsik;Jang, Jae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • HSPF model based on BASINS was applied to analyze effects of watershed management measures for water quality conservation in the Hwaseong Reservoir watershed. The model was calibrated against the field measurements of meteorological data, streamflow and water qualities ($BOD_5$, T-N, T-P) at each observatory for 4 years (2007-2010). The water quality characteristics of inflow streams were evaluated. The 4 scenarios for the water quality improvement were applied to inflow streams and critical area from water pollution based on previous researches. The reduction efficiency of point and non-point sources in inflow streams was evaluated with each scenario. The results demonstrate that the expansion of advanced treatment system within wastewater treatment plants (WWTPs) and construction of pond-wetlands would be great effective management measures. In order to satisfactory the target water quality of reservoir, the measures which can control both point source and non-point source pollutants should be implemented in the watershed.

Analysis of Water Quality on Distributed Watershed using Topographic Data (공간정보를 이용한 분포형 유역 수질 모의)

  • Ryu, Byong-Ro;Jung, Seung-Kwon;Jun, Kye-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.897-913
    • /
    • 2004
  • There has been continuous efforts to manage the water resources for the required water quality criterion at river channel in Korea. However, we could not obtain the partial improvement only for the point source pollutant such as, wastewater from urban and industrial site through the water quality management. Therefore, it is strongly needed that the Best Management Practice(BMP) throughout the river basin for water quality management including non-point source pollutant loads. This problem should be resolved by recognizing the non-point source pollutant loads from upstream river basin to the outlet depends on the land use and soil type characteristic of the river basin using the computer simulation by distributed parameter model based on the detailed investigation and the application of Geographic Information System(GIS). Used in this study, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) model is a tool suitable for long term evaluation of the effects of BMPs and can be used for un gauged watershed simulation of runoff and sediment yield. Now applications of model are in progress. So we just describe the limited result. However If well have done modeling and have investigated of propriety of model, well achieve our final goal of this study.