• Title/Summary/Keyword: non-photochemical quenching

Search Result 30, Processing Time 0.036 seconds

Effect of Partial Shading by Agrivoltaic Systems Panel on Electron Transport Rate and Non-photochemical Quenching of Crop (영농형 태양광 패널의 부분 차광 생육 환경이 작물 전자전달효율과 비광화학적 형광소멸에 미치는 영향)

  • Cho, Yuna;Kim, Hyunki;Jo, Euni;Oh, Dohyeok;Jeong, Hoejeong;Yoon, Changyong;An, Kyunam;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.2
    • /
    • pp.100-107
    • /
    • 2021
  • An agrivoltaic system (AVS) is a system of innovation that comprises productions of photovoltaic power and agricultural crops on the same area. However, the decline in crop yield will be fatally occurred because the pigments of crop absorbs less light energy under AVS. In addtion, the photosynthetic capacity of crop grown under the partial shading of AVS is not well reported. In this study, the electron transport rate (ETR) and non-photochemical fluorescence quenching (NPQ) of soybean and rice under the AVS in Boseong and Naju was investigated using chlorophyll fluorescence measurement. The ETR value of soybean and rice under AVS were not significantly differed by location. It represents that the photophosphorylation rate of the crops is not critically different. It means that the decreases in total photosynthesis under AVS were mostly affected by the amount of light absorbed by leaves. Under AVS the photosynthesis of crops will be lower than field crops grown in open fields. This is because the crops under AVS observed higher NPQ, which means that the available energy cannot distribute to photophosphorylation reaction.

Diurnal and Seasonal Variation of Chlorophyll Fluorescence from Korean Fir Plants on Mt. Halla (한라산 구상나무 잎의 엽록소형광의 일변화와 계절적 변화)

  • 오순자;고정군;김응식;오문유;고석찬
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2001
  • Chlorophyll fluorescence of needles of Korean fir (Abies koreana) plants and environmental factors of their natural habitat were investigated in order to obtain the information for environmental adaptation and conservation of Korean fir plants. The photochemical efficiency of photosystem II, Fv/Fm, of Korean fir needles was significantly low (0.19-0.36) in the winter, whereas it was high (0.8-0.86) in the summer. The Fv/Fm value of the winter was slightly higher at mid-day than at dawn, suggesting that mid-day environmental conditions of the winter were favorable on needles of Korean fir plants. In contrast, the mid-day Fv/Fm value of the summer maintained high (around 0.8). It indicates that mid-day environmental conditions of the summer did not induce photodamage, although it caused a slight decrease in the Fv/Fm values. The non-photochemical fluorescence quenching (NPQ) of Korean fir needles was very low (0-0.01) all through the day in the winter. However, it was high (0.76) at mid-day in the summer. These results suggest that Korean fir plants have a system for the protection of PS II from mid-day environmental stresses of the summer. In the winter, the Fv/Fm values were positively correlated with temperature, light intensity and relative humidity, although NPQ values showed no correlation with any of them. In the summer, the Fv/Fm values were positively correlated with relative humidity but negatively correlated with temperature and light intensity. These results indicate that increase of tempera-ture, light intensity and relative humidity lead to promotion of the photochemical efficiency in the winter and high temperature and light intensity may cause photoinhibition in the summer.

  • PDF

Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis (엽록소형광분석을 이용한 담수산 클로렐라(Chlorella vulgaris)에 미치는 중금속의 영향 평가)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1591-1600
    • /
    • 2015
  • The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity($F_v/F_m$) decreased significantly when exposed to $Cu^{2+}$ and $Hg^{2+}$ for 12 h, and decreased in the order of $Hg^{2+}>Cu^{2+}>Cd^{2+}>Ni^{2+}$ when exposed for 24h. The effective photochemical quantum yield(${\phi}{\prime}_{PSII}$), chlorophyll fluorescence decrease ratio($R_{Fd}$), minimal fluorescence yield($F_o$), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to $Hg^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. These results suggest that $F_v/F_m$, as well as ${\phi}{\prime}_{PSII}$, $R_{Fd}$, $F_o$, and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, $F_v/F_m$ and maximal fluorescence yield($F_m$) changed in response to $Hg^{2+}$ and $Cu^{2+}$ based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.

Photosynthetic Responses to Dehydration in Green Pepper(Capsicum annuum L.)Leaves

  • Lee, Hae-Yeon;Jun, Sung-Soo;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.169-174
    • /
    • 1998
  • Photosynthetic responses to dehydration were examined by the simulataneous measurement of O2 evolution and chlorophyll (Chl) fluorescence in green pepper leaves. Dehydration was induced by immersing the plant roots directly in the Hoagland solution containing varying concentration (2-30%) of polyethylene glycol(PEG-6000) . Water potential of the leaf was decreased time-and concentation -dependently by PEG-treatment. The decrease in water potential of leaf was correlated with the decrease in both the maximal photosynthesis (Pmax) and quantum yield of O2 evolution, but Pmax dropped more rapidly than quantum yield at all water deficit conditions tested. However, Chl fluorescence parameters were not affected much. Dehydration did not change the initial fluorescence (Fo) and maximum photochemical efficiency(Fv/Fm) of photosystem(PS) II. Both the photochemical quenching (qP) and non-photochemical quenching(NPQ) were not changed by dehydration under low PFR(50 $\mu$mols m-2s-1 ). In contrast, under high PFR(270$\mu$mols m-2s-1)qP was slightly decreased while NPQ was greatly increased. The fast induction kinetics of Chl fluroecence showed no change in Chl fluorescence pattern by dehydration at high PFR (640 $\mu$mols m-2s-1 ), but exhibited a significant drop in peak level(Fp)at low PRFR (70$\mu$mols m-2s-1 ). PS I oxidation and reduction kinetics revealed normal reduction but delayed oxidation to P-700+, suggesting no lesionin electron flow from PSII to PSI , but impaired electron transport to NADP+,These results suggest that water stress caused by PEG-treatment results in the reduction of photosynthesis, promarily due to the reducted electron trasport from PSI to NADP+ or hampered subsequent steps involving Calvin Cycle.

  • PDF

Expression of Antioxidant Isoenzyme Genes in Rice under Salt Stress and Effects of Jasmonic Acid and ${\gamma}$-Radiation

  • Kim, Jin-Hong;Chung, Byung-Yeoup;Baek, Myung-Hwa;Wi, Seung-Gon;Yang, Dae-Hwa;Lee, Myung-Chul;Kim, Jae-Sung
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analysis of chlorophyll (Chl) fluorescence implicated treatment of 40 mM NaCl decreased maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm), actual quantum yield of PSII (${\Phi}_{PSII}$), and photochemical quenching (qP) in rice, but increased non-photochemical quenching (NPQ). Decreases in Fv/Fm, ${\Phi}_{PSII}$, and qP were significantly alleviated by $30\;{\mu}M$ jasmonic acid (JA), while NPQ increase was enhanced. Transcription levels of antioxidant isoenzyme genes were differentially modulated by NaCl treatment. Expression of cCuZn-SOD2 gene increased, while those of cAPXb, CATb, and CATc genes decreased. JA prevented salt-induced decrease of pCuZn-SOD gene expression, but caused greater decrease in mRNA levels of cAPXa and Chl_tAPX genes. Investigation of vacuolar $Na^+/H^+$ exchanger (NHX2) and 1-pyrroline-5-carboxylate synthetase (P5CS) gene expressions revealed transcription level of NHX2 gene was increased by JA, regardless of NaCl presence, while that of P5CS gene slightly increased only in co-presence of JA and NaCl. Unlike JA, ${\gamma}$-radiation rarely affected expressions of antioxidant isoenzyme, NHX2, and P5CS genes, except for increase in mRNA level of Chl_tAPX and decrease in that of pCuZn-SOD. These results demonstrate enhanced salt-tolerance in JA-treated rice seedlings may be partly due to high transcription levels of pCuZn-SOD, NHX2, and P5CS genes under salt stress.

Possibility of Drought stress Indexing by Chlorophyll Fluorescence Imaging Technique in Red Pepper (Capsicum annuum L.) (고추의 엽록소 형광 이미지 분석법에 의한 한발스트레스 지표화 가능성)

  • Yoo, Sung-Yung;Eom, Ki-Cheol;Park, So-Hyun;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.676-682
    • /
    • 2012
  • The objectives of this study focused on measuring chlorophyll fluorescence related to drought stress comparing some parameters. Almost parameters were declined although they were not significant on the basis of mean values of fluorescence of total leaf area. While the ratio of fluorescence intensity variable chlorophyll ($F_V$) to fluorescence intensity maximal chlorophyll ($F_M$) was not changed, the effective quantum yield of photochemical energy conversion in photosystemII (${\Phi}PSII$) and chlorophyll fluorescence decrease ratio ($R_{fd}$) were slightly reduced, indicating inhibition of the electron transport from quinone bind protein A ($Q_A$) to quinone bind protein B ($Q_B$). Some parameters such as non-photochemical quenching rate ($NPQ_{_-LSS}$) and coefficients of non-photochemical quenching of variable fluorescence (qN) in mid-zone of leaf and near petiole zone leaf were significantly enhanced within 4 days after drought stress, which can be used as physiological stress parameters. Decrease in ${\Phi}PSII$ could was significantly measured in all leaf zones. In conclusion, three parametric evidences for chlorophyll fluorescence responses such as ${\Phi}PSII$, NPQ, and qN insinuated the possibility of photophysiological indices under drought stress.

Effects of solar UV radiation on photosynthetic performance of the diatom Skeletonema costatum grown under nitrate limited condition

  • Li, Gang;Gao, Kunshan
    • ALGAE
    • /
    • v.29 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • Availability of nutrients is known to influence marine primary production; and it is of general interest to see how nutrient limitation mediates phytoplankton responses to solar ultraviolet radiation (UVR, 280-400 nm). The red tide diatom Skeletonema costatum was cultured under nitrate (N)-limited and N-replete conditions and exposed to different solar irradiation treatments with or without UV-A (315-400 nm) and UV-B (280-315 nm) radiation. Its photochemical quantum yield decreased by 13.6% in N-limited cells as compared to that in N-replete ones under photosynthetically active radiation (PAR)-alone treatment, and the presence of UV-A or UV-B decreased the yield further by 2.8 and 3.1%, respectively. The non-photochemical quenching (NPQ), when the cells were exposed to stressful light condition, was higher in N-limited than in N-replete grown cells by 180% under PAR alone, by 204% under PAR + UV-A and by 76% under PAR + UV-A + UV-B treatments. Our results indicate that the N limitation exacerbates the UVR effects on the S. costatum photosynthetic performance and stimulate its NPQ.

Effect of a Serial Irradiation of Low Dose Gamma Rays on the Growth and Photosynthesis of Red Pepper (Capsicum annuum L.) Plants

  • Kim, Jin-Hong;Chung, Byung Yeoup;Wi, Seung Gon;Baek, Myung-Hwa;Lee, Myung Chul;Kim, Jae-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.537-542
    • /
    • 2004
  • To reveal the relationship between the changes in the growth and photo- synthesis induced by low dose radiation, red pepper (Capsicum annuum L.) plants were serially irradiated three times with gamma rays of 0.5, 1, 2, 3, and 4 Gy. The plant growth was monitored by the fresh weight, the stem length, and the leaf length & width. All the irradiation groups (0.5-4 Gy) were stimulated in growth at 1 day after the $1^{st}$ irradiation (DA1I), but rather inhibited at 3 days after the $3^{rd}$ irradiation (DA3I). The maximum photochemical efficiency (Fv/Fm), the photochemical quenching (qP), the non-:photochemical quenching (NPQ) and the apparent rate of the photosynthetic electron transport (ETR) were used to represent the changes in the photosynthesis by the serial irradiation. The irradiation groups except 0.5 Gy had higher Fv/Fm values at 3 DA3I than the control one. After the 3$^{rd}$ irradiation, the qP values appeared to be a little lower in the 1-4 Gy groups than in the control and 0.5 Gy ones. In contrast, the NPQ values were rather higher in the irradiation groups except 0.5 Gy. During the whole experimental period, the ETRs decreased in the control group but remained relatively constant in the 4-Gy one. In conclusion, the results obtained indicate that the stimulatory effect of ionizing radiation on the plant growth was determined by the incident dose of the single irradiation rather than by the cumulative one of the serial irradiation. They also demonstrate that the growth stimulation induced by a low dose radiation could not be positively correlated with an alteration in the photosynthesis. Additionally, we discuss in text that an ionizing radiation may partly protect the leaf senescence by delaying the development of the plants.

Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana

  • Jeong, Mi-Suk;Hwang, Eun-Young;Jin, Gyoung-Ean;Park, So-Young;Zulfugarov, Ismayil S.;Moon, Yong-Hwan;Lee, Choon-Hwan;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1479-1484
    • /
    • 2010
  • Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). Chlorophyll binding by the photosystem II subunit S protein, PsbS, was found to be necessary for energy-dependent quenching (qE), the major energy-dependent component of non-photochemical quenching (NPQ) in Arabidopsis thaliana. It is proposed that PsbS acts as a trigger of the conformational change that leads to the establishment of nonphotochemical quenching. However, the exact structure and function of PsbS in PSII are still unknown. Here, we clone and express the recombinant PsbS gene from Arabidopsis thaliana in E. coli and purify the resulting homogeneous protein. We used various biochemical and biophysical techniques to elucidate PsbS structure and function, including circular dichroism (CD), fluorescence, and DSC. The protein shows optimal stability at $4^{\circ}C$ and pH 7.5. The CD spectra of PsbS show that the conformational changes of the protein were strongly dependent on pH conditions. The CD curve for PsbS at pH 10.5 curve had the deepest negative peak and the peak of PsbS at pH 4.5 was the least negative. The fluorescence emission spectrum of the purified PsbS protein was also measured, and the ${\lambda}_{max}$ was found to be at 328 nm. PsbS revealed some structural changes under varying temperature and oxygen gas condition.

Synergistic Effects of Low Dose Gamma Irradiation and Growth Regulators on Seed Germination, Growth and Photosynthesis in Rice (Oryza sativa L.) (벼의 종자 발아와 생육 및 광합성에 대한 저선량 감마선과 생장조절물질의 상승작용 효과)

  • Baek Myung-Hwa;Chung Byung Yeoup;Kim Jin-Hong;Wi Seung Gon;Kim Jae-Sung;Lee In-Jung
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.1
    • /
    • pp.64-70
    • /
    • 2005
  • To investigate the synergistic effects of low dose gamma irradiation and growth regulators on the growth and photosynthesis in rice (Oryza sativa L.), laboratory and greenhouse experiments were conducted using 4-year-old rice seeds. In the laboratory experiment, the germination rate was increased in 0.001 ppm IBA treatment, showing the synergistic effect of gamma irradiation and growth regulators. The seedling growth was increased by treatment of GA₃ and IBA, the irradiated groups having higher than the non-irradiated ones. Particularly, it was remarkable in 0.001 ppm IBA. In greenhouse experiment, seedling growth was increased in response to a combination of gamma irradiation and 0.001 ppm IBA. Effective quantum yield of PSⅡ(Ф/sub PSⅡ/) and photochemical quenching (qP) were increased, while non-photochemical quenching (qN) was decreased by 0.001 ppm IBA. A synergistic effect of gamma irradiation and IBA was only found in seedling growth. The present results suggest that low dose gamma irradiation and growth regulator could synergistically stimulate seedling growth.