DOI QR코드

DOI QR Code

Possibility of Drought stress Indexing by Chlorophyll Fluorescence Imaging Technique in Red Pepper (Capsicum annuum L.)

고추의 엽록소 형광 이미지 분석법에 의한 한발스트레스 지표화 가능성

  • Received : 2012.07.27
  • Accepted : 2012.08.30
  • Published : 2012.10.30

Abstract

The objectives of this study focused on measuring chlorophyll fluorescence related to drought stress comparing some parameters. Almost parameters were declined although they were not significant on the basis of mean values of fluorescence of total leaf area. While the ratio of fluorescence intensity variable chlorophyll ($F_V$) to fluorescence intensity maximal chlorophyll ($F_M$) was not changed, the effective quantum yield of photochemical energy conversion in photosystemII (${\Phi}PSII$) and chlorophyll fluorescence decrease ratio ($R_{fd}$) were slightly reduced, indicating inhibition of the electron transport from quinone bind protein A ($Q_A$) to quinone bind protein B ($Q_B$). Some parameters such as non-photochemical quenching rate ($NPQ_{_-LSS}$) and coefficients of non-photochemical quenching of variable fluorescence (qN) in mid-zone of leaf and near petiole zone leaf were significantly enhanced within 4 days after drought stress, which can be used as physiological stress parameters. Decrease in ${\Phi}PSII$ could was significantly measured in all leaf zones. In conclusion, three parametric evidences for chlorophyll fluorescence responses such as ${\Phi}PSII$, NPQ, and qN insinuated the possibility of photophysiological indices under drought stress.

본 연구에서는 생육초기 고추의 한발 스트레스 조건에서 작물 생육에 미치는 영향을 구명하기 위해 엽록소 이미지형 광분석을 이용하여 엽록소 형광 매개변수를 비교분석 하였다. 비록 통계적 유의성이 인정되지는 않았지만 전체 잎의 이미지에 나타나는 형광매개변수들의 평균값은 감소하는 경향이었다. 가변형광값에대한 최대형광값의 비는 변동이 없는 반면, 광계II의 정류상태에서의 양자수득율 및 형광감쇄율은 다소 감소하였다. 이러한 현상은 퀴논 A 단백질로부터 퀴논 B 단백질로의 전자전달의 감소를 의미하였다. 잎의 중앙부위와 엽병부근에서의 비광학적 소광 및 가변형광의 비광학적 소광 상수는 한발스트레스 4일 후 유의성있게 증가하였다. 즉 생리적 스트레스 매개변수로 활용이 가능하였다. 광계II에서의 정류상태 양자수득율의 감소는 고추잎의 모든 부위에서 공통적으로 유의성있게 측정되었다. 결론적으로 ${\Phi}PSII$ ($QY_{_-LSS}$), $NPQ_{_-LSS}$, qN 등의 엽록소형광 매개변수들은 고추의 한발스트레스를 판단할 수 있는 생리적 지표로 활용 가능한 것으로 유의성이 인정되었다.

Keywords

References

  1. Baker, N.R. 2008. Chlorophyll fluorescence. a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:659-668.
  2. Barbagallo, R.P., K. Oxborough., K.E. Pallett, and N.R. Baker. 2003. Rapid, non-invasive screening for pertubations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol. 132:485-493. https://doi.org/10.1104/pp.102.018093
  3. Bjorkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 170:489-504. https://doi.org/10.1007/BF00402983
  4. Briantais, J.M., C. Vernotte., G.H. Krause, and E. Weis. 1986. Chlorophyll a fluorescence of higher plants. : chloroplasts and leaves, in: Govindjee, J. Amesz, D.C. Fork (Eds.). Light Emission by Plants and Bacteria. Academic Press. New York. 539-583.
  5. Butler, W.L. 1966. Fluorescence yield in photosynthetic systems and its relation to electron transport. Curr. Top. Bioenerg. 1:49-73. https://doi.org/10.1016/B978-1-4831-9969-6.50008-1
  6. Butler, W.L. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29:345-378. https://doi.org/10.1146/annurev.pp.29.060178.002021
  7. Butler, W.L. and M. Kitajima. 1975. Fluorescence quenching in photosystem II of chloroplasts. Biochim. Biophys. Acta. 376:116-125. https://doi.org/10.1016/0005-2728(75)90210-8
  8. Calatayud, A., D. Roca, and P.F. Martinez. 2006. Spatialtemporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiology and Biochemistry. 44(10):564-573. https://doi.org/10.1016/j.plaphy.2006.09.015
  9. Horton, P, and J.R. Bowyer. 1990. Chlorophyll fluorescence transients. in: J.L. Harwood, J.R. Bowyer (Eds.). Methods in Plant Biochemistry. vol. 4. Academic Press. New York. 259-296.
  10. Jeong, C.S., Y.R. Yeuong., H.K. Yun., K.C. Yoo, and M. Nagaoka. 1996. Effect of light intensities and temperatures on capsaicin and sugar contents of each growth stage in Capsicum annuum L. Inst. Agri. Sci. Kangwon Nat. Univ. J. Agr. Sci. Vol. 7.
  11. Kautsky, A. and Hirsh. A. 1931. Neue Versuche zur Kohlensäureassimilation." Naturwissenschaften. 19:964.
  12. Krause, G.H, and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis. : the basics, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349. https://doi.org/10.1146/annurev.pp.42.060191.001525
  13. Genty, B., J.M. Briantais, and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  14. Genty, B., J. Harbinson, and Baker, N. R. 1990. Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions. Plant Physiol. Biochem. 28:1-10.
  15. Goedheer, J.H.C. 1972. Fluorescence in relation to photosynthesis. Annu. Rev. Plant Physiol. 23:87-112. https://doi.org/10.1146/annurev.pp.23.060172.000511
  16. Gorbe, E. and A. Calatayud. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae. 138(0):24-35. https://doi.org/10.1016/j.scienta.2012.02.002
  17. Govindjee. 2004. Chlorophyll a fluorescence: a bit of basics and history. in: G.C. Papageorgiou, Govindjee (Eds.). Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration, Springer, Dordrecht. The Netherlands. 19:1-41.
  18. Govindjee. 1995. Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust. J. Plant Physiol. 22:131-160. https://doi.org/10.1071/PP9950131
  19. Govindjee., G.P. and E. Rabinowitch. 1973. Chlorophyll fluorescence and photosynthesis. In G.G. Guilbault (Ed.). Practical Fluorescence Theory. Methods, and Techniques. Marcel Dekker Inc. New York. 543-575.
  20. Govindjee, and P. Jursinic. 1979. Photosynthesis and fast changes in light emission by green plants. Photochem. Photobiol. Rev. 4:125-205.
  21. Jefferies, R.A. 1994. Drought and chlorophyll fluorescence in fieldgrown potato (Solanum tuberosum). Physiologia Plantarum. 90:93-97. https://doi.org/10.1111/j.1399-3054.1994.tb02197.x
  22. Lazar, D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta. 1412:1-28. https://doi.org/10.1016/S0005-2728(99)00047-X
  23. Lazar, D. and G. Schansker. 2009. Models of chlorophyll a fluorescence transients. in: A. Laisk, L. Nedbal, Govindjee (Eds.). Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems, Advances in Photosynthesis and Respiration, Springer, Dordrecht. The Netherlands. 29:85-123.
  24. Massacci, A. and H.G. Jones. 1990. Use of simultaneous analysis of gasexchange and chlorophyll fluorescence quenching for analysing the effects of water stress on photosynthesis in apple leaves. Trees. 4:1-8.
  25. Massacci, A., S.M. Nabiev. L. Pietrosanti., S.K. Nematov., T.N. Chemikova., K. Thor, and J. Leipner. 2008. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol. Biochem. 46(2): 189-195. https://doi.org/10.1016/j.plaphy.2007.10.006
  26. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51:659-668. https://doi.org/10.1093/jexbot/51.345.659
  27. Medrano, H., M.A.J. Parry., X. Socias, and D.W. Lawlor. 1997. Long term water stress inactivates Rubisco in subterranean clover. Annals of Applied Biology. 131(3):491-501. https://doi.org/10.1111/j.1744-7348.1997.tb05176.x
  28. Mosenqvist, E. and O. van Kooten. 2003. Chlorophyll fluorescence: a general description and nomenclature. in: J.R. DeEll, P.M.A. Toivonen (Eds.). Practical Applications of Chlorophyll Fluorescence in Plant Biology. Kluwer Academic Publishers. Dordrecht. The Netherlands. 31-78.
  29. Paillotin, G. 1976. Movement of excitations in the photosynthetic domains of photosystem II. J. Theor. Biol. 58:237-252. https://doi.org/10.1016/0022-5193(76)90150-8
  30. Papageorgiou, G.C., M. Tsimilli-Michael, and K. Stamatakis. 2007. The fast and slow kinetics of chlorophyll a fluorescence induction in plants. algae and cyanobacteria: a viewpoint. Photosynth. Res. 94:275-290. https://doi.org/10.1007/s11120-007-9193-x
  31. Srivastava, A., H. Greppin, and R.J. Strasser. 1995. Acclimation of land plants to diurnal changes in temperature and light. in: P. Mathis (Ed.), Photosynthesis: From Light to Biosphere, Kluwer Academic Publishers. The Netherlands. 4:909-912.
  32. Strasser, R.J., A. Srivastava, and M. Tsimilli-Michael. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In M. Yunus, U. Pathre, P. Mohanty (Eds.), Probing Photosynthesis: Mechanism, Regulation and Adaptation, Taylor and Francis, London, UK. 443-480.
  33. Strasser, R.J., M. Tsimilli-Michael, and A. Srivastava. 2004. Analysis of the chlorophyll fluorescence transient. in: G.C. Papageorgiou, Govindjee (Eds.), Chlorophyll Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration, Springer, Dordrecht. The Netherlands. 19:321-362.
  34. Strasser, R.J. 1985. Dissipative Strukturen als thermodynamischer Regelkreis des Photosynthese apparates. Ber. Deutsche Bot. Ges. Bd. 98:53-72.

Cited by

  1. Photochemical Response Analysis on Drought Stress for Red Pepper (Capsiumannuum L.) vol.46, pp.6, 2013, https://doi.org/10.7745/KJSSF.2013.46.6.659
  2. Application of Chlorophyll a Fluorescence Imaging Analysis for Selection of Rapid Frozen Sweet Persimmon Fruits vol.34, pp.3, 2015, https://doi.org/10.5338/KJEA.2015.34.3.32
  3. Photochemical Index Analysis on the Influence of LED Illumination Color Temperature on Donarium Cherry vol.36, pp.2, 2018, https://doi.org/10.11626/KJEB.2018.36.2.117
  4. The Assessment of Photochemical Index of Nursery Seedlings of Cucumber and Tomato under Drought Stress vol.36, pp.4, 2018, https://doi.org/10.11626/KJEB.2018.36.4.479