• 제목/요약/키워드: non-orthogonal multiple access (NOMA)

검색결과 98건 처리시간 0.02초

비직교 다중 접속 시스템에서 전송률 공정성을 위한 단순한 전력 할당 기법 (Simple Power Allocation Scheme for Data Rate Fairness in NOMA Systems)

  • Lee, In-Ho
    • 한국정보통신학회논문지
    • /
    • 제24권9호
    • /
    • pp.1241-1244
    • /
    • 2020
  • In this paper, we consider a downlink non-orthogonal multiple access system with a base station and N mobile stations, where we assume that instantaneous channel state information (CSI) is available at the base station. A power allocation scheme is proposed to achieve perfect fairness, which means equal data rates for all mobile stations. However, the power allocation scheme using full CSI requires high complexity. Hence, a simple power allocation scheme with low complexity is proposed by using high signal-to-noise power ratio (SNR) approximation. The simple power allocation scheme can achieve perfect fairness only for high SNR. However, it needs only the best CSI and the simple procedure to obtain power allocation coefficients. From simulation results, we show that the simple power allocation scheme provides remarkable fairness performance at high SNR.

On Power Calculation for First and Second Strong Channel Users in M-user NOMA System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제9권3호
    • /
    • pp.49-58
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has been recognized as a significant technology in the fifth generation (5G) and beyond mobile communication, which encompasses the advanced smart convergence of the artificial intelligence (AI) and the internet of things (IoT). In NOMA, since the channel resources are shared by many users, it is essential to establish the user fairness. Such fairness is achieved by the power allocation among the users, and in turn, the less power is allocated to the stronger channel users. Especially, the first and second strong channel users have to share the extremely small amount of power. In this paper, we consider the power optimization for the two users with the small power. First, the closed-form expression for the power allocation is derived and then the results are validated by the numerical results. Furthermore, with the derived analytical expression, for the various channel environments, the optimal power allocation is investigated and the impact of the channel gain difference on the power allocation is analyzed.

Throughput maximization for underlay CR multicarrier NOMA network with cooperative communication

  • Manimekalai, Thirunavukkarasu;Joan, Sparjan Romera;Laxmikandan, Thangavelu
    • ETRI Journal
    • /
    • 제42권6호
    • /
    • pp.846-858
    • /
    • 2020
  • The non-orthogonal multiple access (NOMA) technique offers throughput improvement to meet the demands of the future generation of wireless communication networks. The objective of this work is to further improve the throughput by including an underlay cognitive radio network with an existing multi-carrier NOMA network, using cooperative communication. The throughput is maximized by optimal resource allocation, namely, power allocation, subcarrier assignment, relay selection, user pairing, and subcarrier pairing. Optimal power allocation to the primary and secondary users is accomplished in a way that target rate constraints of the primary users are not affected. The throughput maximization is a combinatorial optimization problem, and the computational complexity increases as the number of users and/or subcarriers in the network increases. To this end, to reduce the computational complexity, a dynamic network resource allocation algorithm is proposed for combinatorial optimization. The simulation results show that the proposed network improves the throughput.

삼중 상관 정보원에서 SIC 대한 non-SIC 비직교 다중 접속의 확장 전송률 용적에 관해 (On Larger Rate Volume of non-SIC NOMA over SIC NOMA for 3-user Correlated Information Sources)

  • 정규혁
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.457-464
    • /
    • 2021
  • 본 논문은 3명의 사용자의 상관 정보원에 대한 non-SIC 비직교 다중 접속의 전송률 용적을 고찰한다. 먼저, non-SIC 3명의 사용자의 상관 정보원의 비직교 다중 접속의 전송률 용적의 폐쇄형 표현 식을 유도한다. 다음, 수치적 결과를 통해, 큰 상관 관계 계수에 대해서, non-SIC 3명의 사용자의 상관 정보원의 비직교 다중 접속의 전송률 용적이 SIC 3명의 사용자의 독립 정보원의 비직교 다중 접속의 전송률 용적보다 크다는 것을 보여준다. 또한, 다양한 비교를 통하여, 약 채널 사용자들의 상관 관계 계수들이 강 채널 사용자들의 상관 관계 계수들보다 전송률 용적에 미치는 영향이 더 크다는 것을 입증한다.

Exact Outage Probability of Two-Way Decode-and-Forward NOMA Scheme with Opportunistic Relay Selection

  • Huynh, Tan-Phuoc;Son, Pham Ngoc;Voznak, Miroslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5862-5887
    • /
    • 2019
  • In this paper, we propose a two-way relaying scheme using non-orthogonal multiple access (NOMA) technology. In this scheme, two sources transmit packets with each other under the assistance of the decode-and-forward (DF) relays, called as a TWDFNOMA protocol. The cooperative relays exploit successive interference cancellation (SIC) technique to decode sequentially the data packets from received summation signals, and then use the digital network coding (DNC) technique to encrypt received data from two sources. A max-min criterion of end-to-end signal-to-interference-plus-noise ratios (SINRs) is used to select a best relay in the proposed TWDFNOMA protocol. Outage probabilities are analyzed to achieve exact closed-form expressions and then, the system performance of the proposed TWDFNOMA protocol is evaluated by these probabilities. Simulation and analysis results discover that the system performance of the proposed TWDFNOMA protocol is improved when compared with a conventional three-timeslot two-way relaying scheme using DNC (denoted as a TWDNC protocol), a four-timeslot two-way relaying scheme without using DNC (denoted as a TWNDNC protocol) and a two-timeslot two-way relaying scheme with amplify-and-forward operations (denoted as a TWANC protocol). Particularly, the proposed TWDFNOMA protocol achieves best performances at two optimal locations of the best relay whereas the midpoint one is the optimal location of the TWDNC and TWNDNC protocols. Finally, the probability analyses are justified by executing Monte Carlo simulations.

Deep Learning-Based Modulation Detection for NOMA Systems

  • Xie, Wenwu;Xiao, Jian;Yang, Jinxia;Wang, Ji;Peng, Xin;Yu, Chao;Zhu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.658-672
    • /
    • 2021
  • Since the signal with strong power need be demodulated first for successive interference cancellation (SIC) receiver in non-orthogonal multiple access (NOMA) systems, the base station (BS) need inform the near user terminal (UT), which has allocated higher power, of the far UT's modulation mode. To avoid unnecessary signaling overhead of control channel, a blind detection algorithm of NOMA signal modulation mode is designed in this paper. Taking the joint constellation density diagrams of NOMA signal as the detection features, the deep residual network is built for classification, so as to detect the modulation mode of NOMA signal. In view of the fact that the joint constellation diagrams are easily polluted by high intensity noise and lose their real distribution pattern, the wavelet denoising method is adopted to improve the quality of constellations. The simulation results represent that the proposed algorithm can achieve satisfactory detection accuracy in NOMA systems. In addition, the factors affecting the recognition performance are also verified and analyzed.

On Power Splitting under User-Fairness for Correlated Superposition Coding NOMA in 5G System

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.68-75
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) has gained the significant attention in the fifth generation (5G) mobile communication, which enables the advanced smart convergence of the artificial intelligence (AI), the internet of things (IoT), and many of the state-of-the-art technologies. Recently, correlated superposition coding (SC) has been proposed in NOMA, to achieve the near-perfect successive interference cancellation (SIC) bit-error rate (BER) performance for the stronger channel users, and to mitigate the severe BER performance degradation for the weaker channel users. In the correlated SC NOMA scheme, the stronger channel user BER performance is even better than the perfect SIC BER performance, for some range of the power allocation factor. However, such excessively good BER performance is not good for the user-fairness, i.e., the more power to the weaker channel user and the less power to the stronger channel user, because the excessively good BER performance of the stronger channel user results in the worse BER performance of the weaker channel user. Therefore, in this paper, we propose the power splitting to establish the user-fairness between both users. First, we derive a closed-form expression for the power splitting factor. Then it is shown that in terms of BER performance, the user-fairness is established between the two users. In result, the power splitting scheme could be considered in correlated SC NOMA for the user-fairness.

MU-MIMO와 STBC를 적용한 NOMA 전송 기법 (NOMA Transmission Scheme using MU-MIMO and STBC)

  • 서방원
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.45-50
    • /
    • 2023
  • 본 논문에서는 기지국이 단말들에게 데이터를 전송하는 경우에, 전체 시스템의 수율을 향상시키기 위하여 다중사용자 다중안테나 기법(MU-MIMO), 시공간부호화 기법(STBC), 비직교 다중접속 기법(NOMA)을 동시에 적용하는 방식을 제안한다. 기지국과 가까이 위치한 두 개의 단말에 대해서는 MU-MIMO 기법을 적용하고, 기지국과 멀리 떨어진 단말은 채널 정보를 얻기가 어렵기 때문에 STBC 기법을 적용한다. 또한 기지국에 가까운 단말과 멀리 떨어진 단말의 데이터들을 구분하기 위하여 NOMA 기법을 적용한다. MU-MIMO를 적용하는 단말들 간에는 서로 직교하는 두 개의 프리코딩 벡터들을 사용함으로써 서로 간의 간섭이 존재하지 않도록 설계한다. 또한 기지국에서 멀리 떨어진 단말에 대해서는 두 개의 프리코딩 벡터들을 사용하는 STBC 기법을 적용한다. 성능 분석 및 모의실험을 통하여 제안하는 기법이 기존 기법보다 더 높은 전체 시스템 수율 값을 갖는다는 것을 보인다.

SUD 수신기의 획득가능한 전송률 분석: 상관 정보원 비직교 다중 접속의 강 채널 사용자에 대한 응용 (Analyses on Achievable Data Rate for Single-User Decoding(SUD) Receiver: with Application to CIS NOMA Strong Channel User)

  • 정규혁
    • 한국전자통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1003-1010
    • /
    • 2020
  • 본 논문은 표준 SIC NOMA와는 대조적으로, SIC를 수행하지 않는 SUD 수신기의 최대 전송률을 고찰한다. 먼저, 강 채널 사용자에 대해 상관 정보원의 SUD NOMA에 대한 최대 전송률의 폐쇄형 표현식을 유도한다. 다음, 강 채널 사용자에 대해서는, 독립 정보원의 SIC NOMA의 최대 전송률과 비교하여, 상관 정보원의 SUD NOMA의 최대 전송률은 일반적으로 감소하는 것을 보여준다. 그러나, 아주 강한 상관 정보원에 대해서는, 독립 정보원의 SIC NOMA의 최대 전송률과 비교하여, 상관 정보원의 SUD NOMA의 최대 전송률은 아주 우수하다는 것을 입증한다. 추가로, 상관 정보원이 SUD 수신기의 최대 전송률에 미치는 영향을 고찰하기 위해, 다양한 상관 관계 계수에 대해, SUD NOMA의 최대 전송률과 SIC NOMA의 최대 전송률을 폭넓게 비교한다.

On Additive Signal Dependent Gaussian Noise Channel Capacity for NOMA in 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권2호
    • /
    • pp.37-44
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been commercialized and the 5G applications, such as the artificial intelligence (AI) and the internet of things (IoT), are deployed all over the world. The 5G new radio (NR) wireless networks are characterized by 100 times more traffic, 1000 times higher system capacity, and 1 ms latency. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In order for the NOMA performance to be improved, sometimes the additive signal-dependent Gaussian noise (ASDGN) channel model is required. However, the channel capacity calculation of such channels is so difficult, that only lower and upper bounds on the capacity of ASDGN channels have been presented. Such difficulties are due to the specific constraints on the dependency. Herein, we provide the capacity of ASDGN channels, by removing the constraints except the dependency. Then we obtain the ASDGN channel capacity, not lower and upper bounds, so that the clear impact of ASDGN can be clarified, compared to additive white Gaussian noise (AWGN). It is shown that the ASDGN channel capacity is greater than the AWGN channel capacity, for the high signal-to-noise ratio (SNR). We also apply the analytical results to the NOMA scheme to verify the superiority of ASDGN channels.