• Title/Summary/Keyword: non-orientable surface

Search Result 5, Processing Time 0.021 seconds

GROUP ACTION FOR ENUMERATING MAPS ON SURFACES

  • Mao, Linfan;Liu, Yanpei
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.201-215
    • /
    • 2003
  • A map is a connected topological graph $\Gamma$ cellularly embedded in a surface. For any connected graph $\Gamma$, by introducing the concertion of semi-arc automorphism group Aut$\_$$\frac{1}{2}$/$\Gamma$ and classifying all embedding of $\Gamma$ undo. the action of this group, the numbers r$\^$O/ ($\Gamma$) and r$\^$N/($\Gamma$) of rooted maps on orientable and non-orientable surfaces with underlying graph $\Gamma$ are found. Many closed formulas without sum ∑ for the number of rooted maps on surfaces (orientable or non-orientable) with given underlying graphs, such as, complete graph K$\_$n/, complete bipartite graph K$\_$m, n/ bouquets B$\_$n/, dipole Dp$\_$n/ and generalized dipole (equation omitted) are refound in this paper.

A LOWER BOUND FOR THE GENUS OF SELF-AMALGAMATION OF HEEGAARD SPLITTINGS

  • Li, Fengling;Lei, Fengchun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.67-77
    • /
    • 2011
  • Let M be a compact orientable closed 3-manifold, and F a non-separating incompressible closed surface in M. Let M' = M - ${\eta}(F)$, where ${\eta}(F)$ is an open regular neighborhood of F in M. In the paper, we give a lower bound of genus of self-amalgamation of minimal Heegaard splitting $V'\;{\cup}_{S'}\;W'$ of M' under some conditions on the distance of the Heegaard splitting.

THE ISOPERIMETRIC PROBLEM ON EUCLIDEAN, SPHERICAL, AND HYPERBOLIC SURFACES

  • Simonson, Matthew D.
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1285-1325
    • /
    • 2011
  • We solve the isoperimetric problem, the least-perimeter way to enclose a given area, on various Euclidean, spherical, and hyperbolic surfaces, sometimes with cusps or free boundary. On hyperbolic genus-two surfaces, Adams and Morgan characterized the four possible types of isoperimetric regions. We prove that all four types actually occur and that on every hyperbolic genus-two surface, one of the isoperimetric regions must be an annulus. In a planar annulus bounded by two circles, we show that the leastperimeter way to enclose a given area is an arc against the outer boundary or a pair of spokes. We generalize this result to spherical and hyperbolic surfaces bounded by circles, horocycles, and other constant-curvature curves. In one case the solution alternates back and forth between two types, a phenomenon we have yet to see in the literature. We also examine non-orientable surfaces such as spherical M$\ddot{o}$obius bands and hyperbolic twisted chimney spaces.

REGULAR MAPS-COMBINATORIAL OBJECTS RELATING DIFFERENT FIELDS OF MATHEMATICS

  • Nedela, Roman
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.1069-1105
    • /
    • 2001
  • Regular maps and hypermaps are cellular decompositions of closed surfaces exhibiting the highest possible number of symmetries. The five Platonic solids present the most familar examples of regular maps. The gret dodecahedron, a 5-valent pentagonal regular map on the surface of genus 5 discovered by Kepler, is probably the first known non-spherical regular map. Modern history of regular maps goes back at least to Klein (1878) who described in [59] a regular map of type (3, 7) on the orientable surface of genus 3. In its early times, the study of regular maps was closely connected with group theory as one can see in Burnside’s famous monograph [19], and more recently in Coxeter’s and Moser’s book [25] (Chapter 8). The present-time interest in regular maps extends to their connection to Dyck\`s triangle groups, Riemann surfaces, algebraic curves, Galois groups and other areas, Many of these links are nicely surveyed in the recent papers of Jones [55] and Jones and Singerman [54]. The presented survey paper is based on the talk given by the author at the conference “Mathematics in the New Millenium”held in Seoul, October 2000. The idea was, on one hand side, to show the relationship of (regular) maps and hypermaps to the above mentioned fields of mathematics. On the other hand, we wanted to stress some ideas and results that are important for understanding of the nature of these interesting mathematical objects.

  • PDF