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Abstract. We define the crosscap number of a 2-component link as the minimum of the

first Betti numbers of connected, non-orientable surfaces bounding the link. We discuss

some properties of the crosscap numbers of 2-component links.

1. Introduction

Throughout this paper we work in the piecewise linear category, and knots and
links we work with are embedded in the 3-sphere S3. The crosscap number of a
knot K was introduced by Clark [1] in 1978. It is defined to be the minimum of
the first Betti numbers of non-orientable surfaces bounding K. Various notations
for the crosscap number of a knot have been used in the past research on it, see for
example [1], [6], [10], [3], [4], and in this paper we denote it by γ(K).

Clark observed in [1] that the inequality γ(K) ≤ 2g(K) + 1 holds and raised
the question whether some knots exist for which the equality holds. Murakami
and Yasuhara [6] brought a concrete calculation for the knot 74 which is the first
example known to satisfy the equality above. It has been shown in [3] that there
exist numerous knots for which the equality holds.

Given a knot, generally it is hard to determine the crosscap number for it.
Clark gave a necessary and sufficient condition for the crosscap number 1 knots,
which says that a knot has crosscap number 1 if and only if it is a (2, n)-cable knot.
Recently the crosscap numbers for several families of knots, such as the torus knots
in [10], the 2-bridge knots in [3], and the pretzel knots in [4], have been determined.

In this paper we define the crosscap number for two-component links and discuss
some properties of it. By following the technique used in [6], we calculate the
crosscap number of the two-component link 62

3 as an example. Here we use the
notation of Rolfsen [9] to denote a link in his link table.
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2. Definitions

The crosscap number of a knot was first introduced by Clark [1] in 1978.

Definition 2.1([1]). The crosscap number γ(K) of a knot K is the minimal number
of the first Betti numbers of all the connected, non-orientable surfaces bounding K.
The crosscap number of the unknot U is defined to be 1.

Note that in this paper we define the crosscap number of the unknot to be 1,
instead of 0 defined by Clark [1].

Clark also gave an upper bound for the crosscap number of a knot in terms of
its genus.

Proposition 2.2([1]). Let K be a knot, and g(K) denote the genus of K. Then

(1) γ(K) ≤ 2g(K) + 1.

Beginning with the knot 74 proved by Murakami and Yasuhara in [6], it has
been shown in [3] that numerous knots are suited for the equality in (1).

The crosscap number of a two-component link is defined similarly to that of a
knot.

Definition 2.3. The crosscap number γ(L) of a two-component link L is the
minimum of the first Betti numbers of connected, non-orientable surfaces bounding
the link, i.e. we have

γ(L) := min{β1(F )|F is a connected non-orientable surface bounding L}.

It is not hard to see that for a 2-component link L, its crosscap number is at
least 2, i.e. γ(L) ≥ 2. This is because the projective plane RP 2 is a closed non-
orientable surface with minimum first Betti number, and the first Betti number of
the surface obtained by cutting two disks off RP 2 is 2.

Let 62
2 be the two-component link illustrated in Figure 1.

Figure 1: Non-orientable surface bounding 62
2 with β1 = 2
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Example 2.4. We have γ(62
2) = 2 as shown in the picture.

3. Behavior of crosscap numbers under split union

In this section we will see how the crosscap number of a split union of two knots
can be evaluated by the crosscap numbers of the knots.

Definition 3.1. A link L = L1∪L2 is called splittable if there exists some 2-sphere
S2 embedded in S3 bounding two 3-balls B1 and B2 with B1∪B2 = S3 such that Li

lies in the interior of Bi (i = 1, 2). A split union of two knots K1 and K2, denoted
by K1 ◦K2, is the splittable link with the 2-sphere bounding two 3-balls such that
Ki lies in the interior of Bi (i = 1, 2).

Firstly, we consider the crosscap number of the split union of any two knots. In
actuality, for the split union of any two knots, its crosscap number can be known in
terms of genera and crosscap numbers of the knots. Namely, we have the following
equality.

Theorem 3.2. Let K1 and K2 be any two knots. We have

γ(K1 ◦K2) = min{γ(K1) + 2g(K2) + 1, γ(K2) + 2g(K1) + 1, γ(K1) + γ(K2) + 1}.
Proof. Let G′ be a connected, non-orientable surface which gives the minimum

first Betti number for the split union K1 ◦K2. There exists a 2-sphere S separating
K1 and K2 with S ∩ G′ 6= ∅. Take an innermost cirle α of S ∩ G′ in S bounding
no disk in G′. (We can always make it because we can remove the circle α without
changing the first Betti number by doing surgery on the surface G′ if it bounds a
disk in G′.)

If α is a non-separating curve in G′, then a surgery along α on the surface G′

gives us a new connected surface bounding K1 ◦K2 with first Betti number smaller
than the previous one by two, either orientable or non-orientable. By adding a half
twisted band, we can have a non-orientable surface with smaller first Betti number
than that of G′ from where a contradiction produces.

Hence we may assume that α is a separating curve which separates the surface
G′ into two surfaces, say G′1 and G′2. Each of them bounds K1 or K2 separately;
otherwise we can get a connected, non-orientable surface bounding K1 ◦ K2 with
smaller first Betti number by doing surgery along α on G′, which contradicts the
minimality of the crosscap number. Then at least one of the two surfaces G′1 and
G′2 is non-orientable. In all there are three possibilities: G′1 orientable and G′2 non-
orientable, G′1 non-orientable and G′2 orientable, or both non-orientable. Therefore
we get the inequality min{γ(K1)+2g(K2)+1, γ(K2)+2g(K1)+1, γ(K1)+γ(K2)+
1} ≤ γ(K1 ◦K2).

On the other hand, we may assume that the knot Ki bounds an orientable
surface Si with genus g(Ki) and a non-orientable surface Gi with first Betti number
γ(Ki) (i = 1, 2). Then three non-orientable surfaces bounding K1 ◦ K2 will be
produced if we connect the surfaces S1 and G2, G1 and S2, and G1 and G2 by
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tubes. The first Betti numbers of these three surfaces are γ(K1) + 2g(K2) + 1,
γ(K2) + 2g(K1) + 1 and γ(K1) + γ(K2) + 1 respectively. This gives us an upper
bound of the crosscap number of the split union, i.e. γ(K1 ◦K2) ≤ min{γ(K1) +
2g(K2) + 1, γ(K2) + 2g(K1) + 1, γ(K1) + γ(K2) + 1}.

Then we have the proof of the equality. ¤

Corollary 3.3. Let K1 and K2 be any two knots. Then the following inequalities
hold:

γ(K1 ◦K2) ≤ γ(K1) + γ(K2) + 1,(2)
γ(K1 ◦K2) ≤ γ(K1) + 2g(K2) + 1,

γ(K1 ◦K2) ≤ γ(K2) + 2g(K1) + 1.

Using Clark’s inequality (1), we have

Corollary 3.4. Let K1 and K2 be any two knots. Then γ(K1 ◦ K2) = γ(K1) +
γ(K2) + 1 if and only if γ(Ki) < 2g(Ki) + 1, i = 1 and 2.

This corollary is equivalent to the following.

Corollary 3.5. γ(K1 ◦K2) = γ(K1) + γ(K2) if and only if γ(Ki) = 2g(Ki) + 1,
i = 1 or 2.

Note that if γ(K1) < 2g(K1) + 1 and γ(K2) = 2g(K2) + 1, then γ(K1 ◦K2) =
γ(K1)+2g(K2)+1; if γ(K1) = 2g(K1)+1 and γ(K2) < 2g(K2)+1, then γ(K1◦K2) =
γ(K2) + 2g(K1) + 1. In fact, the crosscap number γ(K1 ◦K2) is exactly equal to
γ(K1) + γ(K2) in both cases.

If we apply the argument above to the case when K2 is the unknot U , we have
the following corollary.

Corollary 3.6. Let U denote the unknot and K be any knot. Then we have

γ(K ◦ U) = γ(K) + 1.

Next, by applying the homology theory, we discuss a little more the examples for
which the equality in (2) holds.

Proposition 3.7. Let D(L) denote the double branched cover of S3 branched
along the two-component link L. Then the minimum number of generators for
H1(D(L);Z) has the crosscap number γ(L) as an upper bound.

Proof. Let F denote a non-orientable surface which has the minimum first
Betti number, γ(L), bounding L. Then corresponding to this surface, there is a
γ(L)×γ(L) Goeritz matrix built in the way of Gordon and Litherland [2, §2]. Then
this Goeritz matrix becomes a relation matrix for H1(D(L);Z), see Appendix A,
from which the result follows. ¤
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Figure 2: Tubular connection

Remark 3.8. It is known that g(31) = 1 and γ(31) = 1. Thus γ(31) < 2g(31) + 1,
and by Corollary we have γ(31 ◦ 31) = 3 = γ(31) + γ(31) + 1. Now we prove this
in terms of homology theory.

By connecting the two non-orientable surfaces bounding trefoils with a tube, a
non-orientable surface F bounding 31 ◦ 31 can be built. see Figure 2. The Georitz
matrix corresponding to this surface with indicated generators {a, b, c} is as follows:




3 0 0
0 3 0
0 0 0


 .

Then the first homology group of the double cover of S3 branched over 31 ◦ 31,
can be known as H1(D(31 ◦ 31);Z) = Z/3Z ⊕ Z/3Z ⊕ Z. By the fundamental
theorem of abelian groups, H1(D(31 ◦31);Z) cannot be presented by a 2×2 matrix.

So the crosscap number of the split union of two trefoil knots cannot be 2 by
Proposition 3.7. Then we have γ(31 ◦ 31) = 3 = γ(31) + γ(31) + 1.

4. Upper bounds of crosscap numbers of two-component links

Denote by
−→
L and

←−
L the two different relative orientations for a 2-component

link L. Let g(
−→
L ) and g(

←−
L ) denote the genera of L under these two different

orientations.

Theorem 4.1. With the notations above, we have

(3) γ(L) ≤ 2min(g(
−→
L ), g(

←−
L )) + 2.

Proof. Denote min(g(
−→
L ), g(

←−
L )) by g. Then there exists an orientable Seifert

surface F , whose standard form is illustrated in Figure 3, with genus g bounding
the 2-component link L, so the first Betti number of this surface becomes 2g + 1.
By adding a half twist to the surface, we obtain a non-orientable surface from F as
illustrated in Figure 4, whose first Betti number is 2g + 2. By the definition of the
crosscap number, we know that the inequality holds. ¤
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Figure 3: Standard form of a Seifert surface bounding a 2-component link

Figure 4: Surface after adding a half-twisted band

Does there exist any 2-component link for which the equality in (3) holds?

There exists an infinite sequence of 2-component links T (2, 2n) (n ∈ Z) for
which the equality in (3) holds, where T (p, q) denotes a torus knot or link. Take
an example of torus link T (2, 10) as illustrated in Figure 5. It bounds a genus 0
orientable Seifert surface, which gives us an upper bound 2 for the crosscap number
of the link by using the inequality (3). Therefore we have the fact that the crosscap
number of the torus link T (2, 2n) is 2, for which the equality in (3) holds.

Figure 5: Torus link T (2, 10)

Let n(L) denote the minimum crossing number of a link L. We can give another
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upper bound for the crosscap number of a two-component link in terms of n(L).
For a knot, Murakami and Yasuhara in [6] proved the following proposition.

Proposition 4.2([6]). Let n(K) denote the crossing number of a knot K. Then

(4) γ(K) ≤
⌊

n(K)
2

⌋
,

where bxc denotes the greatest integer that does not exceed x.

For a two-component link, we have the following result.

Proposition 4.3. Let L be a two-component link, excluding the unlink. Then we
have

γ(L) ≤
⌊

n(L)
2

⌋
+ 1,

where bxc denotes the greatest integer that does not exceed x.

Note that for the Hopf link, the equality in Proposition 4.3 holds.

Proof. If L is a splittable link K1 ◦K2, then from Proposition 4.2 we have γ(Ki) ≤⌊
n(Ki)

2

⌋
for i = 1, 2, and from Corollary 3.3 we have γ(L) ≤ γ(K1) + γ(K2) + 1.

Then the inequality γ(L) ≤
⌊

n(K1)
2

⌋
+

⌊
n(K2)

2

⌋
+ 1 follows. Hence the theorem

holds for splittable links due to the fact that
⌊

n(K1)
2

⌋
+

⌊
n(K2)

2

⌋
≤

⌊
n(L)

2

⌋
.

Now let D be a link diagram of non-splittable link L with the minimum crossing
number n(L). Then we have n(L) + 2 regions of S2 divided by the link diagram.
Color these regions black and white in a checkerboard way. Since L is a non-
splittable link, all the regions of the same color can be connected to each other by
half-twisted bands at the crossings. If both the white and black surfaces can be
orientable, then γ(L) should be less than or equal to the first Betti number of these
surfaces plus one, where the “1” indicates the added first Betti number by adding
a half-twisted band in that case. Denote the numbers of black and white regions
by n(b) and n(w) respectively. Note that the number of the edges is twice that of
vertices. Then by using a relation between Euler characteristic and the first Betti
number together with Euler’s formula, we have

γ(L) ≤ 2 + n(L)−max{n(b), n(w)}.

It is not hard to know that max{n(b), n(w)} ≥ 1
2
(n(L)+ 2) in the case that n(L) is

even, and max{n(b), n(w)} ≥ 1
2
(n(L) + 3) in the case that n(L) is odd. Therefore

the result follows. ¤
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5. An example of calculation

In this section, we will calculate the crosscap number of the two-component link
62
3 as an example.

Lemma 5.1. Let L be a two-component link K1∪K2. Assume that it bounds a con-
nected, non-orientable surface F with the first Betti number 2. Then we can choose
a generator system for H1(F ;Z) such that the Goeritz matrix GF (L) corresponding
to this system is of the following form:

(5) GF (L) =
(

2n + 1 2k
2k 2m

)
,

where k,m, n are integers.

K1

K2

a
b

Figure 6: A crosscap number two surface

Figure 7: An example of a non-orientable surface with β1 = 2

Proof. We may assume that F is a disk with a non-orientable band and an orientable
one as indicated in Figure 6, where each band may be knotted and linked with the
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other; see for example Figure 7. Choose a generator system {a, b} as in Figure 6
and orient the two components K1 and K2 so that the two boundaries of each band
have the same orientations as that of the 1-cycle passing through it.

Then the Goeritz matrix of the surface F , refer to [2, §2], corresponding to this
generator system is

(
lk(a, τa) lk(a, τb)
lk(b, τa) lk(b, τb)

)
=

(
2δ(A,A) + 1 2δ(A,B)

2δ(B,A) 2δ(B, B)

)
,

where τ(x) denotes the orientation double cover of a cycle x.

+1 -1

Figure 8: Crossing types of bands

Here A and B are the bands which a and b pass through respectively, and
δ(X, Y ) is the sum of signs of crossings of bands X and Y with signs determined as
in Figure 8. Note that lk(a, τb) = lk(b, τa) = 2lk(a, b), and that both of them are
even. This finishes the proof. ¤

Lemma 5.2. With the orientations as above in the proof of Lemma , the linking
number between K1 and K2 is m+2k and the modified Euler number, see Appendix ,
of the surface F is (−2) times the sum of all the entries in the Goeritz matrix GF (L).
Namely,

lk(K1,K2) = m + 2k, e(F ) = −2(2n + 1 + 2k + 2k + 2m).

Proof. According to the proof of the above lemma, we have m = δ(B,B) and k =

lk(a, b). It is obvious that the calculation of the linking number between K1 and K2

includes these two parts, which gives us lk(K1,K2) = δ(B, B)+2lk(a, b) = m+2k.
We also have the fact that the modified normal Euler number of F with the

orientations above is −{4δ(A,A)+2+4δ(A,B)+4δ(B,A)+4δ(B, B)}. Then since
m = δ(B, B), k = δ(A,B) and n = δ(A,A), we obtain the second equality. ¤

We will prove the following conclusion.

Theorem 5.3. Let 62
3 denote the two-component link as illustrated in Figure 9,

forgetting the orientations. We have γ(62
3) = 3.

Proof. It is clear that the surface bounding the two-compnent 62
3 illustrated in

Figure 10 is a non-orientable one with first Betti number 3.
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623 623

Figure 9: 2-component link 62
3 with two orientations

Now note that the crosscap number of a two-component link is at least 2, hence
we may assume that γ(62

3) = 2. Then there exists a non-orientable surface F
bounding the link with H1(F ;Z) = Z⊕ Z. The Goeritz matrix GF (62

3) associated
with F should be a 2 by 2 matrix, determined by a generator system of H1(F ;Z).
A different choice of basis of H1(F ;Z) gives another matrix J such that J = PT GP
where P is an integral unimodular matrix. The integral congruent class which
GF (62

3) belongs to does not change. Since the link 62
3 is the two-bridge link S(12, 5),

Figure 10: Non-orientable surface with β1 = 3

the double branched cover D(62
3) of S3 branched over 62

3 is the lens space L(12, 5)

with H1(D(62
3);Z) = Z/12Z and the linking form λ(g, g) = ± 5

12
for some properly

chosen generator of H1(D(62
3);Z). The determinant of the Goeritz matrix GF (62

3)
is known to be ±12 since the absolute value of the determinant of a Goeritz matrix
of a link is equal to the order of H1(D(L);Z).

By applying an elementary theorem of integral binary quadratic forms (see, for
example [8]), we enumerate all the congruent classes of 2 by 2 integral matrices with
discriminant ±48, 4 times of the matrix determinant.
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Then the result is as follows:

X1 =
(

1 0
0 12

)
, X2 =

(
2 0
0 6

)
, X3 =

(
3 0
0 4

)
, X4 =

(
4 2
2 4

)
,

X5 =
(

1 0
0 −12

)
, X6 =

(−1 0
0 12

)
, X7 =

(
2 0
0 −6

)
,

X8 =
(−2 0

0 6

)
, X9 =

(
3 0
0 −4

)
, X10 =

(−3 0
0 4

)
.

It is obvious that the matrices X2, X4, X7 and X8 cannot present the cyclic
group Z/12Z, and therefore cannot be the relation matrices of H1(D(62

3);Z). On

the other hand, only the matrix X3 presents the linking form ± 5
12

for the link 62
3,

see Appendix B.
If X3 were a Georitz matrix for the link 62

3, then there should exist some integral
unimodular matrix Q such that QT GF (L)Q = X3. The inverse matrix of Q is also
integral unimodular and we denote it by P . Changing the basis of H1(D(62

3);Z) by

using P :=
(

r u
s v

)
, the Goeritz matrix GF (L) is of the form:

PT

(
3 0
0 4

)
P =

(
3r2 + 4s2 3ru + 4sv
3ru + 4sv 3u2 + 4v2

)
.

Recall that the formula by Gordon and Litherland [2], also see Appendix A,
relates the signature of a link with the signature of the Goeritz matrix, σ(L) =

σ(GF ) +
1
2
e(F ). The signature of a link is defined as the signature of the sym-

metrized Seifert matrix, the difference between the number of positive eigenvalues
and negative ones of the matrix.

For some appropriate Seifert surfaces, the corresponding Seifert matrices of the
two-component link under two different orientations,

←−
62
3 and

−→
62
3, see Figure 9, are

as follows:

V (
←−
62
3) =




2 1 0
0 1 0
−1 0 1


 , V (

−→
62
3) =



−1 −1 0
0 1 0
0 1 −1


 .

Then we obtain the signatures of
←−
62
3 and

−→
62
3 as 3 and −1 respectively. We will see

that for either orientation, there exists no solution for which the formula by Gordon
and Litherland holds.

According to Lemma 5.2, we see that the modified normal Euler number e(F )
is −2[3(r + u)2 + 4(s + v)2]. Now since σ(X3) = 2 we have

(6) σ(
←−
62
3) = 3 = 2− [3(r + u)2 + 4(s + v)2],

or

(7) σ(
−→
62
3) = −1 = 2− [3(r + u)2 + 4(s + v)2].
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Since a negative number cannot be equal to the sum of perfect squares, it is not
hard to see that there exists no integral solution of r, s, u, v to the equality (6).

For
−→
62
3, we establish another equality in terms of the linking number by Lemma

5.2. We have

(8) lk(
−→
62
3) = 2 =

3u2 + 4v2

2
+ 3ru + 4sv.

Then we combine the equalities (7) and (8) to get the following system of equations:
{

3(r + u)2 + 4(s + v)2 = 3,

3u2 + 4v2 + 6ru + 8sv − 4 = 0.

Because the values of r, u, s and v are taken in Z, from the first equation we
have r + u = ±1 and s + v = 0. Transform the second equation to the following:

3(u + r)2 − 3r2 + 4(s + v)2 − 4s2 − 4 = 0.

Putting the values of u + r and s + v into the transformed equation, we have
3−3r2−4s2−4 = 0, i.e., 3r2 +4s2 = −1, for which there exists no integral solution
of r and s.

So it turns out that there exist no integral solutions for this system of equa-
tions, which contradicts our assumption. Namely, there exists no connected, non-
orientable surface with first Betti number 2. Therefore, we have γ(62

3) = 3. ¤
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Appendix A. A formula of signature

The definition of the signature of knots and links was developed by Trotter [11]
and Murasugi [7]. For an oriented link in S3 with Seifert matrix V , define the
signature of L to be σ(L) = σ(V + V T ) where σ(M) is the difference between the
number of the positive eigenvalues and that of the negative eigenvalues of a sym-
metric matrix M . Note that the signature of a link is up to the relative orientations
for each component. See, for example [9] or [5].

Gordon and Litherland [2] has shown how to define a quadratic form related
with Goeritz matrix by using any spanning surface, and related the signature of this
form to the signature of a link. We recall their formula here for readers’ information.

Lemma A.1([2]). Let F be any surface bounding an unoriented link L, and let
L denote the link L together with some orientation on each component of it. Then
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the signature σ(L) can be calculated out of the Goeritz matrix GF and the modified
normal Euler number e(F ), namely we have

(1) σ(L) = σ(GF ) +
1
2
e(F ).

Definition A.2([2]). Let L = K1 ∪K2 be a 2-component link with a connected

surface F bounding it. We define e(F ) to be −∑2
i,j=1 lk(Ki,K

′
j) where K ′

i is the
intersection of F and the boundary of the regular neighborhood of Ki in S3, i.e.
K ′

i = F ∩ ∂N(Ki), with orientation parallel to that of Ki. We name it the modified
normal Euler number.

Appendix B. Linking form of a link

Let M denote a closed, oriented 3-dimensional manifold. Denote the torsion
part of H1(M ;Z) by TorH1(M ;Z). A chain complex of M is as follows:

· · · −→ C2(M) ∂2−→ C1(M) ∂1−→ 0,

where Ci(M) is the abelian group generated by i-simplices of M , and ∂i is the
boundary homomorphism (i = 1, 2, · · · ). Suppose that x, y ∈ TorH1(M ;Z) are
represented by 1-cycles a and b respectively. There exists n ∈ Z such that [nb]
is homologous to zero in H1(M ;Z) and nb forms the boundary of some 2-chain,
say ∆ in C2(M), i.e. ∂2(∆) = nb. Define a bilinear form λ : TorH1(M ;Z) ×
TorH1(M ;Z) −→ Q/Z as follows:

(x, y) λ7−→ Int(a,∆)/n,

where Int denotes the intersection number between a 1-cycle and a 2-chain. This
bilinear form λ is called the linking form on the 3-manifold M .

Then the linking form defined on the double branched cover D(L) of L

λ : TorH1(D(L);Z)× TorH1(D(L);Z) −→ Q/Z

is called the linking form of the link L. A Goeritz matrix G of the link L is a
relation matrix for H1(D(L);Z), and the first homology group of D(L) and the
linking form on D(L), (H1(D(L);Z), λ), can be calculated out of the Goeritz ma-
trix. Precisely speaking, H1(D(L);Z) = Zn/ Im(G) where n is the size of the
Goeritz matrix G, and the linking form is given by ±G−1 if H1(D(L);Z) is finite
, i.e. λ(gi, gj) = ±(G−1)ij (mod 1) for the generators gi and gj of H1(D(L);Z),
where {g1, g2, · · · , gn } is a generator system of H1(M ;Z) corresponding to the pre-
sentation of Zn/ Im(G). Here the sign ± depends on the orientation.
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