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A LOWER BOUND FOR THE GENUS OF

SELF-AMALGAMATION OF HEEGAARD SPLITTINGS

Fengling Li and Fengchun Lei∗

Abstract. Let M be a compact orientable closed 3-manifold, and F a

non-separating incompressible closed surface in M . Let M
′
= M − η(F ),

where η(F ) is an open regular neighborhood of F in M . In the paper, we
give a lower bound of genus of self-amalgamation of minimal Heegaard

splitting V
′ ∪

S
′ W

′
of M

′
under some conditions on the distance of the

Heegaard splitting.

1. Introduction

A Heegaard splitting of a 3-manifold M is a decomposition M = V ∪S W of
M in which V andW are compression bodies such that V ∩W = ∂+V = ∂+W =
S and M=V ∪W . S is called a Heegaard surface of M . The genus g(S) of S is
called the genus of the splitting V ∪S W . We use g(M) to denote the Heegaard
genus of M , which is equal to the minimal genus of all Heegaard splittings of
M . A Heegaard splitting V ∪S W for M is minimal if g(S) = g(M). V ∪S W
is said to be weakly reducible if there are essential disks D1 ⊂ V and D2 ⊂ W
with ∂D1 ∩ ∂D2 = ∅. Otherwise, V ∪S W is strongly irreducible. Specially, let
M be a 3-manifold with boundary, and F a collection of boundary components
of M . If V ∪SW is a Heegaard splitting of M such that F ⊂ ∂−V or F ⊂ ∂−W ,
then M = V ∪S W is called a Heegaard splitting relative to F . In this case,
if g(S) is minimal among all the Heegaard splittings of M relative to F , then
g(S) is called the minimal genus of M relative to F , and is denoted by g(M,F).

Let Mi be a connected compact orientable 3-manifold, Fi an incompressible
boundary component of Mi with g(Fi) ≥ 1, i = 1, 2, and F1

∼= F2. Let
φ : F1 → F2 be a homeomorphism, and M = M1 ∪φ M2. Suppose Vi ∪Si Wi is
a Heegaard splitting of Mi (i = 1, 2). Then V1 ∪S1 W1 and V2 ∪S2 W2 induce
a natural Heegaard splitting V ∪S W of M with g(S) = g(S1) + g(S2)− g(F ),
which is called the amalgamation of V1 ∪S1 W1 and V2 ∪S2 W2 along F1 and
F2. Thus we have that g(M) ≤ g(M1) + g(M2)− g(F ).
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There exist examples which show that an amalgamation of two minimal
genus Heegaard splittings of M1 and M2 is stabilized, see [1], [8] and [19]
etc. On the other hand, it has been shown that under some conditions on
the manifolds, the gluing maps, or the distances of the factor manifolds, the
equality g(M) = g(M1) + g(M2) − g(F ) holds, see [9], [10], [20], [7] and [21]
etc.

Suppose now that F is a non-separating incompressible surface in M . Let
η(F ) and N(F ) be the open and closed regular neighborhood of F in M . We

denote by F1 and F2 the two boundary components of N(F ). Let M
′
=

M − η(F ) and M
′
= V

′ ∪S′ W
′
be a Heegaard splitting relative to ∂N(F ).

Then M has a natural Heegaard splitting V ∪SW called the self-amalgamation
of V

′ ∪S′ W
′
as follows:

Assume that F1 ∪ F2 ⊂ ∂−W
′
and let αi be an unknotted arc in W

′
such

that ∂1αi ⊂ ∂+W
′
and ∂2αi ⊂ Fi for i = 1, 2.

Let β be an unknotted arc in N(F ) such that ∂1β = ∂2α1 and ∂2β = ∂2α2.
Now let N(α1 ∪ β ∪ α2) be a closed regular neighborhood of α1 ∪ β ∪ α2 in

W
′ ∪N(F ), and η(α1∪β ∪α2) be an open regular neighborhood of α1∪β ∪α2

in W
′ ∪N(F ). Let V = V

′ ∪N(α1 ∪ β ∪ α2), and W = W
′ ∪N(F )− η(α1 ∪

β ∪ α2). Then V ∪S W is a Heegaard splitting of M . We call V ∪S W the

self-amalgamation of V
′ ∪S′ W

′
, and M the self-amalgamation of M ′. It is

clear g(S) = g(S
′
) + 1. Therefore, g(M) ≤ g(M ′; ∂N(F )) + 1.

Qiu and Lei [13] and Du, Lei, and Ma [4] have given lower bounds of
Heegaard genera of the self-amalgamation of 3-manifolds under some circum-
stances.

Theorem 1.1. Let M be an orientable closed 3-manifold, and F a non-
separating incompressible closed surface. Let M

′
= M − η(F ). If M

′
has a

Heegaard splitting V
′ ∪S′ W

′
with d(S

′
) > 2g(M

′
), then g(M) ≥ g(M

′
)−g(F ).

Furthermore, if F is a torus, then g(M) ≥ g(M
′
) + 1.

Theorem 1.2. Let M be an orientable closed 3-manifold, and F a non-
separating incompressible closed surface. Let M

′
= M−η(F ). If M

′
has a Hee-

gaard splitting V
′∪S′W

′
relative to ∂N(F ) such that d(S

′
) > 2(g(M

′
, ∂N(F ))+

2g(F )), then M has a unique minimal Heegaard splitting up to isotopy, i.e.,

the self-amalgamation of V
′ ∪S′ W

′
.

In this paper we give a lower bound for genera of self-amalgamations of
Heegaard splittings under some condition on the distances of the Heegaard
splittings as follows:

Theorem 1.3. Let M be a compact orientable closed 3-manifold and F a non-
separating incompressible closed surface in M . Let M

′
= M − η(F ). Suppose

M
′
has a Heegaard splitting V

′ ∪S′ W
′
with d(S

′
) > 2(t + 2g(F )), where t is

an integer with 1 ≤ t ≤ g(M
′
). Then g(M) ≥ t+ 1.

As a direct consequence of Theorem 1.3, we have:
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Corollary 1.4. Let M be a compact orientable closed 3-manifold and F a non-
separating incompressible closed surface in M . Let M

′
= M − η(F ). Suppose

M
′
has a Heegaard splitting V

′ ∪S′ W
′
with d(S

′
) > 2(g(M

′
) + 2g(F )). Then

g(M) ≥ g(M
′
) + 1. In particular, if V

′ ∪S′ W
′
is a Heegaard splitting relative

to ∂N(F ), then the self-amalgamation of V
′ ∪S′ W

′
for M is minimal.

In Section 2, we review some preliminaries which will be used in Section 3.
The proof of Theorem 1.3 is given in Section 3.

2. Preliminaries

In this section, we will review some fundamental facts on surfaces in 3-
manifolds.

Let M be a 3-manifold. Suppose F is a surface properly embedded in M .
If F is incompressible and not parallel to a sub-surface of ∂M , then F is said
to be an essential surface in M .

Let M = V ∪S W be a Heegaard splitting, α and β be two essential simple
closed curves in S. The distance d(α, β) of α and β is the smallest integer
n ≥ 0 such that there is a sequence of essential simple closed curves α =
α0, α1, . . . , αn = β in S with αi−1 ∩ αi = ∅ for 1 ≤ i ≤ n. The distance of
the Heegaard splitting V ∪S W is defined to be d(S) = min {d(α, β)}, where α
bounds an essential disk in V and β bounds an essential disk in W . d(S) was
first defined by Hempel in [6]. It is clear that V ∪S W is reducible if and only
if d(S) = 0, V ∪S W is weakly reducible if and only if d(S) ≤ 1.

The following are some basic facts and results on Heegaard splittings.

Lemma 2.1 ([18]). Let V be a compression body and F an incompressible
surface in V with ∂F ⊂ ∂+V . Then each component of V − F is a compression
body.

Lemma 2.2 ([5]). Let V ∪S W be a Heegaard splitting of M and F a prop-
erly embedded incompressible surface (possibly disconnected) in M . Then any
component of F is parallel to ∂M or d(S) ≤ 2− χ(F ).

Let M = V ∪S W be a Heegaard splitting, and F a boundary component
of M . By gluing a F × I to F and then amalgamating the standard Heegaard
splitting of genus 2g(F ) of F × I (see [16]) with the given Heegaard splitting
(V,W ) of M , we get a new Heegaard splitting of M . The construction above
is called a boundary stabilization on the boundary component F . This was
defined by Moriah in [11].

Lemma 2.3 ([17]). Suppose P and Q are Heegaard splitting surfaces for the
compact orientable 3-manifold M . Then either d(P ) ≤ 2genus(Q) or Q is
isotopic to P or to a stabilization or boundary-stabilization of P .

Let M = V ∪S W be a strongly irreducible Heegaard splitting, and F a
collection of essential surfaces in M . F is called a minimal separating system if
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M −F contains two components M1 and M2 and for any proper subset F ′
of

F , M −F ′
contains only one component. The following lemma is an extension

of Schultens’s lemma [18]. Bachman, Schleimer and Sedgwick [2] first proved
Lemma 2.4 when F is connected and closed.

Lemma 2.4 ([13]). Let M = V ∪SW be a strongly irreducible Heegaard splitting
and F a minimal separating system in M which cuts M into two manifolds M1

and M2. Then S can be isotoped such that
(1) each of S ∩M1 and S ∩M2 is incompressible; or
(2) one of S ∩ M1 and S ∩ M2, say S ∩ M1, is incompressible while all

components of S∩M2 are incompressible except one bicompressible component;
or

(3) one of S ∩M1 and S ∩M2, say S ∩M1, is incompressible while S ∩M2

is compressible. Furthermore, there is a Heegaard surface S
′
isotopic to S such

that
(i) at most one component of S

′ ∩ M1 is compressible while S
′ ∩ M2 is

incompressible, and
(ii) S

′
is obtained by ∂-compressing S in M2 only one time.

Proof. Let
{
H1,H2

}
=

{
W,V

}
. If each component of S ∩ M1 and S ∩ M2

is incompressible, then Lemma 2.4(1) holds. If one of S ∩ M1 and S ∩ M2 is
bicompressible, then, since V ∪SW is strongly irreducible, Lemma 2.4(2) holds.
We may assume that

Assumption (1) one or both of S ∩ M1 and S ∩ M2 are compressible in
M1 ∩H1 and M2 ∩H1, respectively.

Assumption (2) S ∩Mi is incompressible in Mi ∩H2 for i = 1, 2.
Since F is a collection of essential surfaces in M , H1 and H2 are non-trivial

compression bodies. Let D be an essential disk of H2 such that |D ∩ F| is
minimal among all essential disks in H2. By Assumption (2), |D ∩ F| > 0.
Furthermore, we may assume that

Assumption (3) S is a strongly irreducible Heegaard surface such that |D∩F|
is minimal among all Heegaard surfaces isotopic to S and satisfying Assump-
tions (1) and (2).

Let a be an outermost component of D ∩ F on D. This means that a,
together with an arc b on ∂D(⊂ S), bounds a disk B in D which lies in either
M1∩H2 orM2∩H2 such that B∩F = a, and we may assume that B ⊂ M2∩H2.
By the minimality of |D ∩ F|, B is a ∂-compressing disk of S ∩M2.

Now there are two cases:
Case 1. S ∩ M1 is compressible in M1 ∩ H1 (S ∩ M2 is compressible or

incompressible in M2 ∩H1).

Now let S
′
be the Heegaard surface of M obtained by ∂-compressing S along

B. In fact, S
′
is isotopic to S. We denote by H

′

1 and H
′

2 the two components

of M − S
′
. We may assume that H1 ⊂ H

′

1. Since the ∂-compression is done

in M2 ∩ H2, M1 ∩ H1 ⊂ M1 ∩ H
′

1 and S ∩ M1 ⊂ S
′ ∩ M1. Since S ∩ M1 is
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compressible in M1 ∩H1, S
′ ∩M1 is compressible in M1 ∩H

′

1. Now if S
′ ∩M1

is compressible in M1 ∩H
′

2, then Lemma 2.4(2) holds.

Suppose that S
′∩M1 is incompressible in M1∩H

′

2. If S
′∩M2 is compressible

M2 ∩ H
′

2, this contradicts Assumption (2). Hence S
′ ∩ M2 is incompressible

in M2 ∩ H
′

2. Now D ∩ H
′

2 is an essential disk in H
′

2. But |D ∩ H
′

2 ∩ F| =
|D ∩ F| − 1. This contradicts Assumption (3) regardless of compressibility or

incompressibility of S
′ ∩M2 in M2 ∩H

′

1.
Case 2. S ∩M2 is compressible in M2 ∩H1, and S ∩M1 is incompressible

in M1 ∩H1.
Similarly, let S

′
be the Heegaard surface of M obtained by ∂-compressing

S along B. We denote by H
′

1 and H
′

2 the two components of M − S
′
. We

may assume that H1 ⊂ H
′

1. Since the ∂-compression is done in M2 ∩ H2,

S ∩M1 ⊂ S
′ ∩M1. By observation we can see that S

′ ∩M1 is incompressible
in M1 ∩H

′

1 since new component of S
′ ∩M1 is obtained by attaching a band

and new component of M1 ∩H
′

1 is obtained by attaching a 1-handle incident

to the band. At most one component of S
′ ∩M1 is compressible in M1 ∩H

′

2

since S ∩M1 is incompressible in M1 ∩H2 by Assumption (2).

Now if S
′ ∩M2 is compressible M2 ∩H

′

2, this contradicts Assumption (2).

Hence S
′ ∩ M2 is incompressible M2 ∩ H

′

2. If S
′ ∩ M2 is incompressible in

M2 ∩H
′

1, then Lemma 2.4(3) holds.

Suppose that S
′ ∩M2 is compressible in M2 ∩H

′

1. If it is the case that one

component of S
′ ∩M1 is compressible in M1 ∩H

′

2, this contradicts the strong

irreducibility of S
′
. Hence the remaining case is that S

′ ∩M1 is incompressible
in M1 ∩H

′

2, while |D ∩H
′

2 ∩ F| = |D ∩ F| − 1. This contradicts Assumption
(3). □

Lemma 2.5 ([4]). Let S, S1, S2 be three Heegaard surfaces of M such that
S1 ∩ S2 = ∅ and the component of M − S1 ∪ S2 containing S1 and S2 contains
at least one component of ∂M . Then at least one Si is not obtained by doing
stabilizations on S.

Proof. Suppose both S1 and S2 are obtained by doing stabilizations on S.
Since each Heegaard surface separates M , S1 and S2 are disjoint, M − S1 ∪

S2 has three components M1, M∗, M2, M = M1 ∪S1 M∗ ∪S2 M2. By the
assumption, we have ∂M∗ = S1 ∪ S2 ∪ S∗, where S∗ is a non-empty union of
components of ∂M .

Suppose S
′
is a stabilization of S. We describe S

′
in a slightly different

way. Let N(S) be a closed regular neighborhood of S in M . Identify a suitable

component of N(S)− S with S × [0, 1] so that S = S × {0}. Then S
′
= ∂(S ×

[0, 1]∪N(α))−S, where α is an arc in M with α∩S× [0, 1] = ∂α ⊂ S×{1} and
N(α) is a 1-handle attached to S× [0, 1]. Now the 3-manifold S× [0, 1]∪N(α)

provides a homology from S to S
′
, and moreover this homology is carried in a

regular neighborhood of a 2-complex S × {1} ∪ α in M .
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Since Si is obtained by a sequence of stabilizations of S, by induction we
have that S and Si are homological, and moreover the homology is carried in a
regular neighborhood of a 2-complex in M . Hence S1 and S2 are homological in
M and the homology is carried in a regular neighborhood N(X) of a 2-complex
X in M , S1, S2 ⊂ X.

Claim. Either ∂M1 ̸= S1 or M1 is not a subset of N(X). The similar is true
for M2.

Proof of Claim. We are going to prove the claim by contradiction. Suppose
∂M1 = S1 and M1 ⊂ N(X).

Note N(X) ∩M1 is a regular neighborhood of X ∩M1 in M1. Let D(M1)
be the double of M1, which is obtained by gluing two copies of M1 along their
boundaries via the identity. LetD(X∩M1) (resp. D(N(X)∩M1)) be the union
of two copies of X ∩M1 (resp. N(X) ∩M1) in D(M1). Then D(N(X) ∩M1)
is a regular neighborhood of D(X ∩M1) in D(M1).

Now D(M1) is a closed 3-manifold and D(N(X)∩M1)=D(M1). This is not
possible, since D(N(X)∩M1) has the 2-complex D(X ∩M1) as a deformation
retract, which cannot be a closed 3-manifold. So the claim is proved. □

Let M
′

i = Mi if ∂Mi ̸= Si, and otherwise M
′

i = Mi −B3
i where B3

i ⊂ intMi

is a small 3-ball disjoint from N(X). Let M
′
= M −B3

1 −B3
2 . Clearly

(1) N(X) ⊂ M
′
,

(2) M
′
= M

′

1 ∪S1 M∗ ∪S2 M
′

2, ∂M∗ = S1 ∪ S2 ∪ S∗, ∂M
′

1 = S1 ∪ S
′

1, ∂M
′

2 =

S2 ∪ S
′

2. Each one of S∗, S
′

1, S
′

2 is non-empty.
Since N(X) carries the homology from S1 to S2, S1 and S2 are still homol-

ogous in M
′
.

On the other hand, S1 and S2 are two closed disjoint orientable surfaces in
orientable 3-manifoldM

′
, S1 and S2 are homological inM

′
if and only if S1∪S2

cobounds a submanifold in M
′
or each of S1 and S2 bounds a submanifold and

homologically trivial, which is not possible by (2). □

3. The proof of the main theorem

Now we come to the proof of Theorem 1.3.

Proof of Theorem 1.3. By assumption, M
′
= M − η(F ), and V

′ ∪S′ W
′
is a

Heegaard splitting of M
′
with d(S

′
) > 2(t + 2g(F )) > 0, then by Haken’s

lemma (refer to [3]), M
′
and M are irreducible.

Suppose that the inequality g(M) ≥ t+1 does not hold, then there exists a
minimal Heegaard splitting V ∪S W of M with g(S) < t+ 1.

We divide it into the following two cases to discuss.
Case 1. The Heegaard splitting V ∪S W is strongly irreducible.

Claim 1. S can be isotoped so that S ∩M
′
is bicompressible while S ∩N(F )

is incompressible.
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Proof of Claim 1. In this case, ∂N(F ) is a minimal separating system in M

which cuts M into M
′
and N(F ). By Lemma 2.4, S can be isotoped to one of

the following three cases:
(1) S ∩M

′
and S ∩N(F ) are incompressible.

Since g(S) < t + 1 and d(S
′
) > 2(t + 2g(F )), by Lemma 2.2, S ∩ M

′
is

∂-parallel in M
′
, then S is isotopic to F , a contradiction.

(2) one of S ∩M
′
and S ∩N(F ) is bicompressible while the other is incom-

pressible.
By the arguments in (1), S ∩M

′
is bicompressible while S ∩N(F ) is incom-

pressible.
(3) S ∩M

′
is compressible while S ∩N(F ) is incompressible. Furthermore,

there is a Heegaard surface S∗ isotopic to S such that S∗ ∩M
′
is incompress-

ible and at most one component of S∗ ∩ N(F ) is compressible. By the same
arguments as (1), this is impossible. This completes the proof of Claim 1.

By Claim 1, we may assume that S ∩M
′
is bicompressible while S ∩N(F )

is incompressible. Furthermore, we assume that |S ∩N(F )| is minimal among
all Heegaard surfaces isotopic to S and satisfying the above conditions.

Since V ∪S W is strongly irreducible, there is only one component, say P ,
of S ∩ M

′
which is bicompressible. And any other component of S ∩ M

′
is

incompressible. Suppose that there is a component of S ∩M
′
besides P , say

Q, which is incompressible, then by Lemma 2.2, Q is ∂-parallel in M
′
, then

Q can be isotoped to be disjoint from M
′
. This contradicts the minimality of

|S ∩N(F )|. Thus S ∩M
′
has only one component, it is connected.

Obviously, any component of ∂N(F ) ∩ V is incompressible in V , and any
component of ∂N(F ) ∩ W is incompressible in W . Then by Lemma 2.1, any

component of V ∩ M
′
and W ∩ M

′
is a compression body. Since S ∩ M

′
is

connected, V ∩M
′
is one compression body, and so is W ∩M

′
.

By the above arguments, S ∩M
′
is connected and bicompressible. Let SV

be the surface obtained by maximally compressing S ∩M
′
in V ∩M

′
. We may

assume that S ∩M
′
is compressed to SV in V ∩M

′
by cutting S ∩M

′
open

along a collection D = {D1, . . . , Dn} of pairwise disjoint compressing disks in

V ∩M
′
. Since V ∪S W is strongly irreducible, by the No nesting Lemma [14],

SV is incompressible in M
′
. Then by Lemma 2.2, we know that any component

of SV is ∂-parallel in M
′
.

Let A1, . . . , Ar be all the components of SV with boundary, ∂Ai ⊂ ∂N(F )
for 1 ≤ i ≤ r. Suppose that each Ai is parallel to a subsurface A′

i of ∂N(F )
for 1 ≤ i ≤ r.

Claim 2. For any components Ai, Aj of SV , A
′

i ∩A
′

j = ∅.
Proof of Claim 2. Suppose that there are two components of SV , say Ai0 and

Aj0 , such that A
′

i0
∩A

′

j0
̸= ∅, we may further assume that A

′

i0
⊂ A

′

j0
. Then set

A1={Ai : A
′

i ⊂ A′
j0
, 1 ≤ i ≤ r, i ̸= j0} and A2={Ai : A

′

i ∩A
′

j0
= ∅, 1 ≤ i ≤ r}.

We claim that A2 = ∅. Otherwise, since S ∩M
′
is connected, there must exist
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Ai1 ∈ A1, Ai2 ∈ A2, and Dp1 , Dp2 ∈ D such that Dp1 ∩ Dp2 = ∅ and in the
compression, the two copies of Dpk

lie in Aik and Aj0 respectively, k = 1, 2.

But this contradicts to the assumption that S ∩M
′
is separating in M

′
. Thus

A2 = ∅. We denote by WAj0
the handlebody bounded by Aj0 and A

′

j0
in M

′
.

Then all components of SV lie in WAj0
, so S can be isotoped to be disjoint

from M
′
in M , a contradiction. This completes the proof of Claim 2.

By Claim 2, for each component of ∂N(F ) ∩ V , say A
′

i∗
, there is one and

only one component Ai∗ of SV which is parallel to A
′

i∗
. Let B1, . . . , Bt be

the components of ∂N(F )− ∪r
i=1A

′
i = ∂N(F ) ∩ W . Take a small regular

neighborhood Bi × I of Bi in W ∩ M
′
, where Bi × {0} = Bi, i = 1, 2, . . . , t.

Set V
′

1 = (V ∩ M
′
)
∪
∪t
i=1Bi × I and W

′

1 = M ′ − V
′
1 . Then V

′

1 is obtained

from ∂N(F ) × I by adding 1-handles whose co-cores are disks in D, so V
′

1 is

a compression body. Note that W
′

1 = (W ∩M ′)− ∪t
i=1Bi × I ∼= W ∩M

′
, W

′

1

is a compression body. Let S
′

1 = ∂+V
′

1 . Then it is obvious that S
′

1 = ∂+W
′

1.

Thus, S
′

1 is a Heegaard surface of M
′
. Since S∩M

′
is compressible in W ∩M

′
,

there exists a compressing disk D of S ∩M
′
in W ∩M

′
with D ∩ (Bi × I) = ∅

and D ⊂ W
′

1. Since ∂Bi× I are spanning annuli in V
′

1 , there exists an essential

disk E in V
′

1 with E ∩ (∂Bi × I) = ∅ (cf. [12] Lemma 2.1). Thus d(S
′

1) ≤ 2.

Let S1 = (S ∩M
′
) ∪ (∂N(F ) ∩W ). Then S

′

1 is the surface obtained from S1

by pushing ∂N(F ) ∩W slightly into W ∩M
′
.

Now let S2 = (S∩M
′
)∪ (∂N(F )∩V ), we denote by S

′

2 the surface obtained

from S2 by pushing ∂N(F )∩ V slightly into M
′ ∩ V . By similar arguments as

above, we know that S
′

2 is also a Heegaard surface of M
′
and d(S

′

2) ≤ 2. By a

small isotopy of S
′

1, we may assume that S
′

1 ∩ S
′

2 = ∅. By the construction of

S
′

1 and S
′

2, we know that the component of M
′ −S

′

1 ∪S
′

2 containing S
′

1 and S
′

2

also contains ∂N(F ).

Since χ(S ∩M
′
) ≥ χ(S) > −2t, and

χ(S
′

1) = χ(S ∩M
′
) + χ(∂N(F ) ∩W )

≥ χ(S) + χ(∂N(F ))

= χ(S) + 2χ(F ),

we have

(1) g(S
′

1) < t+ 2g(F )− 1.

Similarly,

(2) g(S
′

2) < t+ 2g(F )− 1.

Since d(S
′
) > 2(t+2g(F )) > 2g(S

′

i) ≥ 2g(M
′
), by Lemma 2.3, V

′ ∪S′ W
′
is

the unique minimal Heegaard splitting of M
′
up to isotopy, and S

′

i is isotopic

to S
′
or to a possible stabilization or boundary-stabilization of S

′
for i = 1, 2.

But d(S
′
) > 2(t + 2g(F )) > 2 while d(S

′

i) ≤ 2, S
′

i cannot be isotopic to the
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unique minimal Heegaard surface S
′
of M

′
for i = 1, 2. Hence S

′

i is obtained

by doing stabilization or boundary-stabilization on S
′
for i = 1, 2.

There are two subcases:
Subcase 1. M

′
= V

′ ∪S′ W
′
is a Heegaard splitting relative to ∂N(F ).

By Lemma 2.5, one of S
′

1 and S
′

2, say S
′

1, is obtained by doing boundary-

stabilizations on S
′
at least one time. Since S

′

1 and S
′
are both Heegaard

splittings relative to ∂N(F ), S
′

1 is obtained by doing boundary-stabilizations

on S
′
at least two times. Hence g(S

′

1) ≥ g(M
′
) + 2g(F ), a contradiction.

Subcase 2. M
′
= V

′ ∪S′ W
′
is a Heegaard splitting with F1 ⊂ ∂−V

′
and

F2 ⊂ ∂−W
′
.

Since F1 ⊂ ∂−V
′
and F2 ⊂ ∂−W

′
, and by the construction of S

′

1 and S
′

2, S
′

1

and S
′

2 are Heegaard surfaces relative to ∂N(F ). By Lemma 2.3 and (1), S
′

1

is obtained from S
′
by doing boundary-stabilizations at least one time, hence

g(S
′

1) ≥ g(S
′
)+g(F ). By the similar arguments, we have g(S

′

2) ≥ g(S
′
)+g(F ).

Now

χ(S
′

1) = χ(S ∩M
′
) + χ(∂N(F ) ∩W ) ≤ 2− 2(g(M

′
) + g(F )),

and

χ(S
′

2) = χ(S ∩M
′
) + χ(∂N(F ) ∩ V ) ≤ 2− 2(g(M

′
) + g(F )),

hence

2χ(S ∩M
′
) ≤ 4− 4(g(M

′
) + g(F ))− χ(∂N(F ) ∩W )− χ(∂N(F ) ∩ V )

= 4− 4(g(M
′
) + g(F ))− 2χ(F ),

then χ(S ∩ M
′
) ≤ −2g(M

′
), and χ(S ∩ N(F )) ≤ 0, now we have g(S) ≥

g(M
′
) + 1 ≥ t+ 1, a contradiction to our assumption.

Case 2. The Heegaard splitting V ∪S W is weakly reducible.
Now M = V ∪S W is irreducible and weakly reducible, then V ∪S W has an

untelescoping [15] as

V ∪S W = (V1 ∪S1 W1) ∪H1 . . . ∪Hn−1 (Vn ∪Sn Wn)

where n ≥ 2, each component of H1, . . . ,Hn−1 is an incompressible closed
surface in M , and Mi = Vi∪Si Wi is a non-trivial strongly irreducible Heegaard
splitting for 1 ≤ i ≤ n. Since V ∪S W is minimal, g(S) = g(M) < t+ 1. Note

that g(Hi) < g(S). Since d(S
′
) > 2(t+2g(F )), by Lemma 2.2, any component

of Hi∩M
′
is ∂-parallel in M

′
for each i, then Hi can be isotoped to be disjoint

fromM
′
for each i. This means that each component ofH1, . . . , Hn−1 is parallel

to F . Now one of the manifolds M1, . . . ,Mn is homeomorphic to M
′
, and each

of the other is homeomorphic to F × I.
Suppose some Mi0 is homeomorphic to M

′
, Vi0 ∪Si0

Wi0 is a Heegaard

splitting of M
′
, we have g(Si0) ≤ g(S) − 1 < t ≤ g(M

′
), a contradiction.

This case cannot happen.
This completes the proof of Theorem 1.3. □
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