• Title/Summary/Keyword: non-newtonian fluid

Search Result 198, Processing Time 0.028 seconds

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.175-183
    • /
    • 2009
  • This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.

Three-dimensional numerical simulation for the prediction of product shape in sheet casting process

  • Chae, Kyung-Sun;Lee, Mi-Hye;Lee, Seong-Jae;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.107-117
    • /
    • 2000
  • Prediction of the product shape in sheet casting process is performed from the numerical simulation. A three-dimensional finite element method is used to investigate the flow behavior and to examine the effects of processing conditions on the sheet produced. Effects of inertia, gravity, surface tension and non-Newtonian viscosity on the thickness profile of the sheet are considered since the edge bead and the flow patterns in the chill roll region have great influence on the quality of the products. In the numerical simulation with free surface flows, the spine method is adopted to update the free surface, and the force-free boundary condition is imposed along the take-up plane to avoid severe singularity problems existing at the take-up plane. From the numerical results of steady isothermal flows of a generalized Newtonian fluid, it is shown that the draw ratio plays a major role in predicting the shape of the final sheet produced and the surface tension has considerable effect on the bead thickness ratio and the bead width fraction, while shear-thinning and/or tension-thickening viscosity affect the degree of neck-in.

  • PDF

Deformation characteristics of spherical bubble collapse in Newtonian fluids near the wall using the Finite Element Method with ALE formulation

  • Kim See-Jo;Lim Kyung-Hun;Kim Chong-Youp
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.109-118
    • /
    • 2006
  • A finite-element method was employed to analyze axisymmetric unsteady motion of a deformable bubble near the wall. In the present study a deformable bubble in a Newtonian medium near the wall was considered. In solving the governing equations a structured mesh generator was used to describe the collapse of highly deformed bubbles with the Arbitrary Lagrangian Eulerian (ALE) method being employed in order to capture the transient bubble boundary effectively. In order to check the accuracy of the present FE analysis we compared the results of our FE solutions with the result of the collapse of spherical bubbles in a large body of fluid in which solutions can be obtained using a 1D FE analysis. It has been found that 1D and 2D bubble deformations are in good agreement for spherically symmetric problems confirming the validity of the numerical code. Non-spherically symmetric problems were also solved for the collapse of bubble located near a plane solid wall. We have shown that a microjet develops at the bubble boundary away from the wall as already observed experimentally. We have discussed the effect of Reynolds number and distance of the bubble center from the wall on the transient collapse pattern of bubble.

A Study on the Helical Flow of Newtonian and non-Newtonian fluid (뉴튼 및 비뉴튼 유체의 헬리컬 유동에 관한 연구)

  • Kim Young-Ju;Kim Chul-Soo;Hwang Young-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • This study concerns the characteristics of helical flow in a concentric and eccentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and $0.2\%$ aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of $0\~500$ rpm. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. This study shows the change of skin friction coefficient and wall shear stress corresponding to the variation of rotating speed of the inner cylinder, radius ratio, eccentricity, and working fluids.

Effects of the Velocity Waveform of the Physiological Flow on the Hemodynamics in the Bifurcated Tube

  • Roh, Hyung-Woon;Kim, Jae-Soo;Suh, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.296-309
    • /
    • 2003
  • The periodicity of the physiological flow has been the major interest of analytic research in this field up to now Among the mechanical forces stimulating the biochemical reaction of endothelial cells on the wall, the wall shear stresses show the strongest effect to the biochemical product. The objective of present study is to find the effects of velocity waveform on the wall shear stresses and pressure distribution along the artery and to present some correlation of the velocity waveform with the clinical observations. In order to investigate the complex flow phenomena in the bifurcated tube, constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids, are determined, and pulsatile momemtum equations are solved by the finite volume prediction. The results show that pressure and wall shear stresses are related to the velocity waveform of the physiological flow and the blood viscosity. And the variational tendency of the wall shear stresses along the flow direction is very similar to the applied sinusoidal and physiological velocity waveforms, but the stress values are quite different depending on the local region. Under the sinusoidal velocity waveform, a Newtonian fluid and blood show big differences in velocity. pressure, and wall shear stress as a function of time, but the differences under the physiological velocity waveform are negligibly small.

Rheological Properties and Particle Size Distribution of Northeast Mixed Hardwood for Enzymatic Saccharification Processing with High Substrates Loading

  • Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.56-65
    • /
    • 2008
  • In this paper experimental results are presented for the rheological behavior of high-solids saccharification of mixed northeast hardwood as a model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20 percent slurry concentrations with constant enzyme concentrations were performed under variable rotational speed of a viscometer (2.0 to 200 RPM) at combined temperatures (50 to $30^{\circ}C$) for the initial four hours. The viscosities of saccharification slurries observed were in the ranges of 0.024 to 0.028, 0.401 to 0.058, and 0.840 to 0.087 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20 percent initial solids (w/v) respectively. The fluid behavior of the suspensions was modeled using the power-law, the Herschel-Bulkley, the Casson, and the Bingham model. The results showed that broth slurries were pseudoplastic with a yield stress. The model slope increased and the model intercept decreased with increasing fermentation time at shear rates normal for the fermentor. The broth slurries exhibited Newtonian behavior at high and low shear rates during initial saccharification process. The solid particle size ranged from 57.8 to $70.0{\mu}m$ for $40^{\circ}C$ and from 44.0 to 57.5 11m for combined temperatures at 10, 15, and 20 percent initial solids (w/v) respectively.

Study of the Friction Force Measurements According to the Rolling-Sliding Ratios under the Condition of Elastohydrodynamic Lubrication (구름-미끄럼 속도비에 따른 탄성유체윤활영역에서 유막두께와 마찰력 측정연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.225-230
    • /
    • 2004
  • Most studies of elsatohydrodynamic lubrication are oriented only to the measurement of film thickness itself with optical interferometer. In order to exactly investigate the tribological characteristics of a certain lubricant, it is also important to get the information of traction behaviors as well. In this work, we developed a device for measuring the friction force of ehl contact condition as well as the film thickness. To verify the validity of the measuring system, the friction forces and film thicknesses under ehl condition are simultaneously measured with the variations of additive ratios of viscosity index improvers which cause non-linear tendencies of film thickness to contact velocity.

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

  • Sung, Kun-Hyuk;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • A numerical analysis is performed to investigate the effect of rotation on the blood flow characteristics with four different angular velocities. The artery has a cylindrical shape with 50% stenosis rate symmetrically distributed at the middle. Blood flow is considered a non-Newtonian fluid. Using the Carreau model, we apply the pulsatile velocity profile at the inlet boundary. The period of the heart beat is one second. In comparison with no-rotation case, the flow recirculation zone (FRZ) contracts and its duration is reduced in axially rotating artery. Also wall shear stress is larger after the FRZ disappears. Although the geometry of artery is axisymmetry, the spiral wave and asymmetric flow occur clearly at the small rotation rate. It is caused that the flow is influenced by the effects of the rotation and the stenosis at same time.

Laminar Convective Heat Transfer from a Horizontal Flat Plate of Phase Change Material Slurry Flow

  • Kim Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.779-784
    • /
    • 2005
  • This paper presents the theory of similarity transformations applied to the momentum and energy equations for laminar, forced, external boundary layer flow over a horizontal flat plate which leads to a set of non-linear, ordinary differential equations of phase change material slurry(PCM Slurry). The momentum and energy equation set numerically to obtain the non-dimensional velocity and temperature profiles in a laminar boundary layer are solved. The heat transfer characteristics of PCM slurry was numerically investigated with similar method. It is clarified that the similar solution method of Newtonian fluid can be used reasonably this type of PCM slurry which has low concentration. The data of local wall heat flux and convective heat transfer coefficient of PCM slurry are higher than those of water more than 150$\~$200$\%$, approximately.

The Effects of a Type and Concentration of Coal and Additive on the Rheological Characteristics of CWM (석탄의 종류, 농도 및 첨가제가 석탄-물 혼합연료의 유동특성에 미치는 영향)

  • Kim, Soo-Ho;Hwang, Kap-Sung;Hong, Song-Sun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.640-644
    • /
    • 1997
  • We investigated that how both the type and the concentration of coal and the surfactant and the electrolyte added to increase the fluidity of CWM influence rheological characteristics. According to the type of coal, the viscosity of CWM was increased with increasing O/C ratio. Also, the CWM was represented the property of non-Newtonian fluid, having yield stress which was linerarly increased with increasing coal concentration. According to the surfactant used as an additive, the rheological characteristics of CWM was represented the pseudoplastic property as n<1 without relating to the concentration of added surfactants. Also, according to the increase of the amount of electrolyte, n was nearly approached 1. Therfore, we found that CWM opproched Newtonian fluid and that when more than 0.05wt.% of electrolyte were added, yield stress was not shown up.

  • PDF