• Title/Summary/Keyword: non-monotonic Reasoning

Search Result 7, Processing Time 0.02 seconds

Integration of Ontology Open-World and Rule Closed-World Reasoning (온톨로지 Open World 추론과 규칙 Closed World 추론의 통합)

  • Choi, Jung-Hwa;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.282-296
    • /
    • 2010
  • OWL is an ontology language for the Semantic Web, and suited to modelling the knowledge of a specific domain in the real-world. Ontology also can infer new implicit knowledge from the explicit knowledge. However, the modeled knowledge cannot be complete as the whole of the common-sense of the human cannot be represented totally. Ontology do not concern handling nonmonotonic reasoning to detect incomplete modeling such as the integrity constraints and exceptions. A default rule can handle the exception about a specific class in ontology. Integrity constraint can be clear that restrictions on class define which and how many relationships the instances of that class must hold. In this paper, we propose a practical reasoning system for open and closed-world reasoning that supports a novel hybrid integration of ontology based on open world assumption (OWA) and non-monotonic rule based on closed-world assumption (CWA). The system utilizes a method to solve the problem which occurs when dealing with the incomplete knowledge under the OWA. The method uses the answer set programming (ASP) to find a solution. ASP is a logic-program, which can be seen as the computational embodiment of non-monotonic reasoning, and enables a query based on CWA to knowledge base (KB) of description logic. Our system not only finds practical cases from examples by the Protege, which require non-monotonic reasoning, but also estimates novel reasoning results for the cases based on KB which realizes a transparent integration of rules and ontologies supported by some well-known projects.

Adaptive Strategy Game Engine Using Non-monotonic Reasoning and Inductive Machine Learning (비단조 추론과 귀납적 기계학습 기반 적응형 전략 게임 엔진)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Strategic games are missing special qualities of genre these days. Game engines neither reason about behaviors of computer objects nor have learning ability that can prepare countermeasure in variously command user's strategy. This paper suggests a strategic game engine that applies non-monotonic reasoning and inductive machine learning. The engine emphasizes three components -“user behavior monitor”to abstract user's objects behavior,“learning engine”to learn user's strategy,“behavior display handler”to reflect abstracted behavior of computer objects on game. Especially, this paper proposes two layered-structure to apply non-monotonic reasoning and inductive learning to make behaviors of computer objects that learns strategy behaviors of user objects exactly, and corresponds in user's objects. The engine decides actions and strategies of computer objects with created information through inductive learning. Main contribution of this paper is that computer objects command excellent strategies and reveal differentiation with behavior of existing computer objects to apply non-monotonic reasoning and inductive machine learning.

An Evidence Retraction Scheme on Evidence Dependency Network

  • Lee, Gye Sung
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.133-140
    • /
    • 2019
  • In this paper, we present an algorithm for adjusting degree of belief for consistency on the evidence dependency network where various sets of evidence support different sets of hypotheses. It is common for experts to assign higher degree of belief to a hypothesis when there is more evidence over the hypothesis. Human expert without knowledge of uncertainty handling may not be able to cope with how evidence is combined to produce the anticipated belief value. Belief in a hypothesis changes as a series of evidence is known to be true. In non-monotonic reasoning environments, the belief retraction method is needed to clearly deal with uncertain situations. We create evidence dependency network from rules and apply the evidence retraction algorithm to refine belief values on the hypothesis set. We also introduce negative belief values to reflect the reverse effect of evidence combination.

A STUDY ON NON-MONOTONIC REASONING SYSTEM (비단조 논리를 이용한 추론 범위 확장에 관한 연구)

  • Lee, Kang-Heuy;Cha, Kuk-Chan;Choi, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1038-1041
    • /
    • 1987
  • Non-monotonic logic is one in which the introduction of new axioms can eliminate old theorems. Such logic is very important in modeling the beliefs of the systems which, in the presence of complete information, must make and subsequently revise assumptions in light of new observations. In the present paper, we suggest that the formal systems, such as Reiter's default logic could be the useful implement for the specification and description of non-monotonic systems. WE develop a theory of inheritance network in order to illustrate the benefits of this theory.

  • PDF

Belief Function Retraction and Tracing Algorithm for Rule Refinement

  • Lee, Gye Sung
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.94-101
    • /
    • 2019
  • Building a stable knowledge base is an important issue in the application of knowledge engineering. In this paper, we present an algorithm for detecting and locating discrepancies in the line of the reasoning process especially when discrepancies occur on belief values. This includes backtracking the rule firing from a goal node of the rule network. Retracting a belief function allows the current belief state to move back to another belief state without the rule firing. It also gives an estimate, called contribution measure, of how much the rule has an impact on the current belief state. Examining the measure leads the expert to locate the possible cause of problem in the rule. For non-monotonic reasoning, the belief retraction method moves the belief state back to the previous state. A tracing algorithm is presented to identify and locate the cause of problem. This also gives repair suggestions for rule refinement.

Distributed Assumption-Based Truth Maintenance System for Scalable Reasoning (대용량 추론을 위한 분산환경에서의 가정기반진리관리시스템)

  • Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1115-1123
    • /
    • 2016
  • Assumption-based truth maintenance system (ATMS) is a tool that maintains the reasoning process of inference engine. It also supports non-monotonic reasoning based on dependency-directed backtracking. Bookkeeping all the reasoning processes allows it to quickly check and retract beliefs and efficiently provide solutions for problems with large search space. However, the amount of data has been exponentially grown recently, making it impossible to use a single machine for solving large-scale problems. The maintaining process for solving such problems can lead to high computation cost due to large memory overhead. To overcome this drawback, this paper presents an approach towards incrementally maintaining the reasoning process of inference engine on cluster using Spark. It maintains data dependencies such as assumption, label, environment and justification on a cluster of machines in parallel and efficiently updates changes in a large amount of inferred datasets. We deployed the proposed ATMS on a cluster with 5 machines, conducted OWL/RDFS reasoning over University benchmark data (LUBM) and evaluated our system in terms of its performance and functionalities such as assertion, explanation and retraction. In our experiments, the proposed system performed the operations in a reasonably short period of time for over 80GB inferred LUBM2000 dataset.

Pecking Order Prediction of Debt Changes and Its Implication for the Retail Firm (부채변화에 대한 순서이론 예측력 검정 및 유통기업의 함의)

  • Lee, Jeong-Hwan;Liu, Won-Suk
    • Journal of Distribution Science
    • /
    • v.13 no.10
    • /
    • pp.73-82
    • /
    • 2015
  • Purpose - This paper aims to investigate whether information asymmetry could explain capital structures in Korean corporations. According to Myers (1984), firms prefer internal funding to external financing due to the costs associated with information asymmetry. When external financing is necessary, firms prefer to issue debt rather than equity by the same reasoning. Since Shyam-Sunder and Myers (1999), numerous studies continue to debate the validity of the theory. In this paper, we show how the theory depends on assumptions and incorporated variables. We hope our investigation can provide helpful implications regarding capital structure, information asymmetry, and other firm characteristics. Specifically, our empirical results are complementary to the analysis of Son and Lee's (2015), a recent study that examines the pecking order theory prediction for Korean retail firms. Research design, data, and methodology - We test empirical models that are some variants of model used in Shyam-Sunder and Myers (1999). The financial and accounting data are provided by WISEfn for the firms listed on the KOSPI during 1990 to 2013. Bond ratings are supplied by the Korea Investor Service (KIS). We take into account the heterogeneity in debt capacity; a firm's debt capacity is measured by using the method of Lemmon and Zender (2010) based on its bond ratings. Finally, we estimate empirical models suggested by Shyam-Sunder and Myers (1999), Frank and Goyal (2003), and Lemmon and Zender (2010). Results - First, we find that Shyam-Sunder and Myers' (1999) prediction fails to explain total debt changes of Korean firms. Second, we find a non-monotonic relationship between total debt changes and financial deficits with respect to debt capacity. This contradicts the prediction of Lemmon and Zender (2010) that argues the pecking order theory survives with a monotonically increasing relationship. Third, we estimate a negative correlation coefficient between financial deficit and current debt changes. The result is the complete opposite of the prediction of Lemmon and Zender (2010). Finally, we also confirm the non-monotonic relationship between non-current debt changes and financial deficits with respect to debt capacity. Yet, the slope of coefficient is smaller than that of total debt change case. Indeed, the results are, to some extent, consistent with the prediction of pecking order theory, if we exclude the mid-debt capacity firms. Conclusions - Our empirical results complementary to the analysis of Son and Lee (2015), a recent study focusing on capital structure in Korean retail firms; their paper suggests interesting topics regarding capital structure, information asymmetry, and other firm characteristics in Korean corporations. Contrary to Son and Lee (2015), our results show that total debt changes and current debt changes are inconsistent with the prediction of Shyam-Sunder and Myers (1999). However, similar to Son and Lee (2015), non-current debt changes are consistent with the pecking order prediction, in the case of excluding the mid-level debt capacity firms. This contrast allows us to infer that industry characteristics significantly affect the validity of the pecking order prediction. Further studies are needed to analyze the economics behind this phenomenon, which is beyond the scope of our paper. In addition, the estimation bias potentially matters regarding the firm-level debt capacity calculation. We also reserve this topic for future research.