• Title/Summary/Keyword: non-metallic electrode

Search Result 17, Processing Time 0.02 seconds

Synthesis and Properties of La1-xSrxMnO3 System as Air Electrode for Solid Oxide Fuel Cell (고체산화물 연료전지의 공기극으로서 La1-xSrxMnO3 계의 합성 및 특성)

  • Lee, You-Kee;Lee, Young-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.470-475
    • /
    • 2012
  • $La_{1-x}Sr_xMnO_3$(LSM,$0{\leq}x{\leq}0.5$) powders as the air electrode for solid oxide fuel cell were synthesized by a glycine-nitrate combustion process. The powders were then examined by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The as-formed powders were composed of very fine ash particles linked together in chains. X-ray maps of the LSM powders milled for 1.5 h showed that the metallic elements are homogeneously distributed inside each grain and in the different grains. The powder XRD patterns of the LSM with x < 0.3 showed a rhombohedral phase; the phase changes to the cubic phase at higher compositions($x{\geq}0.3$) calcined in air at $1200^{\circ}C$ for 4 h. Also, the SEM micrographs showed that the average grain size decreases as Sr content increases. Composite air electrodes made of 50/50 vol% of the resulting LSM powders and yttria stabilized zirconia(YSZ) powders were prepared by colloidal deposition technique. The electrodes were studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell(SOFC). Reproducible impedance spectra were confirmed using the improved cell, which consisted of LSM-YSZ/YSZ. The composite electrode of LSM and YSZ was found to yield a lower cathodic resistivity than that of the non-composite one. Also, the addition of YSZ to the $La_{1-x}Sr_xMnO_3$ ($0.1{\leq}x{\leq}0.2$) electrode led to a pronounced, large decrease in the cathodic resistivity of the LSM-YSZ composite electrodes.

Structural and Magnetic Studies on Electrochemically Lithiated $PrBa_2Cu_3O_y$

  • Choy, Jin-Ho;Chun, Sung-Ho;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.564-567
    • /
    • 1990
  • A lithiated compound $Li_{0.1}Pr^{3+}Ba_2Cu_3O_y$ has been successfully prepared by electrochemical method, which is achieved with a two electrode cell of the type: Metal(Li)/($Li^+\;,\;ClO_4^-$) + propylene carbonate/$PrBa_2Cu_3O_y$. All Pr ions in the lithiated compound are stabilized with a trivalent state as the other rare earths (Ⅲ) substituted in the 90K superconductor lattice ($Y_{1-x}Ln_x^-Ba_2Cu_3O_{7-{\delta}}$). Powder X-ray diffraction analysis shows that both compounds, $PrBa_2Cu_3O_y$ and $Li_{0.1}PrBa_2Cu_3O_y$ are isostructural with the 90 K superconductor, ($YBa_2Cu_3O_{7-{\delta}}$), nevertheless both of them are non-metallic and also non-superconducting down to 10 K. Magnetic susceptibility ${\chi}$ vs. temperature data indicate that Curie contribution from the magnetic ions (Pr and Cu) is weakened on the one hand, but on the other hand temperature-independent part of susceptibility ${\chi}_o$ increases depending upon the rate of lithium intercalation in $PrBa_2Cu_3O_y$ lattice.

Electrodes for contact electric welding of aluminium alloys

  • Bondar, M.P.;Moon, J.G.
    • Proceedings of the KWS Conference
    • /
    • 1997.10a
    • /
    • pp.184-193
    • /
    • 1997
  • Aluminium and aluminium alloys have the high electrical and heat conductivity. It gives rise to difficulties for a choice of electrodes material for their contact electric welding. This paper describes the investigations performed to solve the above problem. The purpose of this investigation was to obtain dispersion-hardening alloys by the internal oxidation method, to optimize their contents and treatment modes, to produce electrodes of these alloys and to test them. The strengthing effect of alloys with oxide particles depends on their size stability at high temperatures. Despite of the fact, that oxides are the most stable of all the non-metallic phases their coagulation takes place. Based on the early results, we chose two types of alloys, first No. 1 Cu - 0,4%Al and second No. 2 Cu - 0,2%Be for production of electrodes. These alloys had not additional alloying elements. These alloys were prepared as 1 mm plates and flake-formed 200 m thick, and also No. 1 as a powder of size 100 mkm (received from Korea). The large samples for electrodes were produced by three methods : explosive welding method, dynamic one including the explosion compression of electrode blank and the quasi-dynamic method including the high-speed compression of dense briquest and the further hot extrusion of a rod.

  • PDF

A Study on Filed Application of Electro-Osmosis Soil Improvement Method with Nano-Coated Plastic Drain Baord (나노 코팅된 PDB를 이용한 동전기 지반개량 공법의 현장 적용성에 관한 연구)

  • Ahn, Sangro;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.5-11
    • /
    • 2018
  • The PBD (Plastic Board Drain) method is one of effective ground improvement methods on the soft dredging reclamation ground. This method has outstanding economic efficiency and constructability, and it is widely used for the soft ground improvement. However, the PBD method reduces permeability and drainage capacity of the ground due to the long construction period. Therefore, the nano coated Plastic drain board (PDB) was developed to solve problems. It is the non-metallic electrode and improves the weakness of the PBD method by using electric force of the electro-osmosis method. Various researches have been conducted to apply the nano coated PDB, but these researches were limited to model tests in laboratory. In this study, model and field tests were conducted to assess field applicability of the nano coated PDB. The result showed that the nano coated PDB had the better effect on the ground improvement compared to the normal PDB.

The Variation of Cu Recovery by Electrowinning Conditions and Their Mineralogical Characteristics from Cathodic Deposition-powdered Copper (전기분해 조건에 따른 구리 회수 변화와 음극회수-구리분말에 대한 광물학적 특성)

  • Cho, Kang-Hee;Kim, Bong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.183-195
    • /
    • 2014
  • In order to study the mineralogical characteristics of a cathodic deposition-metallic powder, electrowinning experiments were carrier out on different electrolytic solutions at varying electric distances and electric currents. Under the same experimental conditions, Cu recovery was obtained much more effectively using a sodium chloride electrolyte than with a sulfuric acid electrolyte. In XRD analysis, copper ($Cu^0$), chalcanthite and cuprite were identified in the sulfuric acid electrolyte, while copper, nantokite and chalcanthite were observed in the sodium chloride electrolyte. In the sodium chloride electrolyte solution, increasing the electric distance and the electric current increased the Cu recovery rate, anode weight and anodic corrosion. The results of XRD analysis with non-pulverized cathodic deposition-metallic powder showed the average copper crystallite size was increased by increasing the electric current and decreasing the electric distance. It is suggested that the mass transfer was controlled with diffusion on the boundary between the electrode and the electrolytic solution due to the formation of dendrite copper.

Recovery of Silicon from Silicon Sludge by Electrolysis (실리콘 슬러지로부터 실리콘의 전해회수(電解回收))

  • Park, Jesik;Jang, Hee Dong;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • As a recovery of elemental silicon from the sludge of Si wafer process, a process of mechanical separation-chlorine roasting-electrolysis has been suggested. The silicon sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by mechanical separation. The Si-SiC mixture was converted to silicon chloride by chlorine roasting at $1000^{\circ}C$ for 1 hr and the silicon chloride was dissolved into an ionic liquid of $[Bmpy]Tf_2N$ as an electrolyte. Cyclic voltammetry results showed an wide voltage window of pure $[Bmpy]Tf_2N$ and a reduction peak of elemental Si from $[Bmpy]Tf_2N$ dissolved $SiCl_4$ on Au electrode, respectively. The silicon deposits could be prepared on the Au electrode by the potentiostatic electrolysis of -1.9 V vs. Pt-QRE. The elemental silicon uniformly electrodeposited was confirmed by various analytical techniques including XRD, FE-SEM with EDS, and XPS. Any impurity was not detected except trace oxygen contaminated during handling for analysis.

Selective Recovery of Platinum Group Metals by Solvent Extraction and Electrolysis in Non-aqueous Solution Based on Ionic Liquids (이온성액체 기반 비수계 용액에서 용매추출과 전해에 의한 백금족 금속의 분리회수)

  • Park, Gwang-won;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.46-53
    • /
    • 2019
  • In this study, the extraction and reduction behavior of platinum group metals in a non-aqueous solvent based on ionic liquids was investigated in order to confirm a new extraction technology of platinum group metals. Platinum was selectively extracted using an ionic liquid $[C_4mim]PF_6$ from a mixed solution of $PdCl_2$, $PtCl_4$ and $RhCl_3$ dissolved with concentration ratio of 10:1:0.5 M. After stripping of the metals by 1 M $HNO_3$ solution, the platinum was preferentially reduced by aqueous electrolysis on gold electrode at -0.8 V (vs. Pt-QRE). The residual palladium and rhodium were transferred to ionic liquid of $[C_4mim]Cl$. The metallic palladium and rhodium could be sequentially reduced on gold and STS304 as working electrodes by non-aqueous electrolysis, respectively.