• Title/Summary/Keyword: non-metallic

Search Result 422, Processing Time 0.029 seconds

A Study on Plastic Injection Molding of a Metallic Resin Pigment using a Rapid Heating and Cooling System (급속가열냉각장치에 의한 금속성 안료 사출성형)

  • Lee, Gyu-Sang;Jin, Dong-Hyun;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • The injection molding process is widely used in the production of most plastic products. In order to make metal-colored plastic products like those found in modern luxury home alliances, metallic pigments are mixed with a basic resin material for injection molding. However, process control for metal-colored plastic products is extremely difficult due to the non-uniform melt flow of the metallic resin pigments. In this study, the effect of process parameters on the quality of a metal-colored plastic product is evaluated. A rapid mold cooling method using a compressed cryogenic fluid is also proposed to decrease the content of undesired compounds within the plastic product.

Researches on the Enhancement of Plasticity of Bulk Metallic Glass Alloys

  • Kim, Byoung Jin;Kim, Won Tae
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • Bulk metallic glass (BMG) shows higth strength, high elastic limit, corrosion resistance and good wear resistance and soft magnetic properties and has been considering as a candidate for new structural materials. But they show limited macroscopic plasticity and lack of tensile ductility due to highly localized shear deformation, which should be solved for real structural application. In this paper researches on the enhancement of plasticity of BMG were reviewed briefly. Introducing heterogeneous structure in glass is effective to induce more shear transformation zones (STZs) active for multiple shear band initiation and also to block the propagating shear band. Several methods such as BMG alloy design for high Poisson's ratio, addition of alloying element having positive heat of mixing, pre-straining BMG and variety of BMG composites have been developed for homogenous distribution of locally weak region, where local strain can be initiated. Therefore enhancement of plasticity of BMG is normally accompanied with some penalty of strength loss.

Prediction Model on Electrical Conductivity of High Density Metallic Plasma (고밀도 금속 플라즈마 전기전도도 예측모델)

  • Kyoungjin Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.1-9
    • /
    • 2022
  • This study introduces the calculation model of ionization composition and electrical conductivity for metallic plasma for practical application to modeling and simulation of modern electrical detonators. The present model includes the correction for non-ideality of dense plasma conditions which are expected in electrical explosion of bridge in detonators. The computational results for copper plasma show favorable agreement with experimental data for a wide range of plasma temperature and high density conditions and the model is proper for detonator modeling with good prediction accuracy.

The Changing Structure of Demand-Supply for Mineral Resources in South Korea (국내(國內) 광물자원(鑛物資源)의 수요(需要)-공급(供給)의 구조변화(構造變化))

  • Oh, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.23 no.3
    • /
    • pp.309-322
    • /
    • 1990
  • The accelerated industrialization of Korean economy over the last couple of decades has brought an era of mass consumption of mineral commodities. This increased consumption has been satisfied mainly by imports from abroad. South Korea has about 50 useful mineral commodities for the mineral industry, among 330 kinds of minerals described. In 1988 the self-sufficiency ratio of domestic demand for 44 non-fuel(metallic and non-metallic) minerals as a whole was no more than 29 percent. The ratio for 26 non-metallic minerals was much higher, about 66 percent. On the other hand, the ratio for 18 metallic minerals was relatively very low, about 6.3 percent. The correlation between GNP and mineral consumption in South Korea shows well the slow down patterns during the last two decades.

  • PDF

Studies in Iron Manufacture Technology through Analysis of Iron Artifact in Han River Basin during the Proto-Three Kingdoms

  • Kim, Soo-Ki
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.9-22
    • /
    • 2012
  • The most widely excavated iron artifacts used as weapons or farm tools from central southern regions of Korea were subjects of non-metallic inclusion analysis through metallographic examination, microhardness measurement, and scanning electron microscopy with energy dispersive X-ray spectroscopy. Through metallographic interpretation and study of the analyzed results, the steel manufacturing and iron smelting using heat processing in the iron artifacts excavated from the central southern region of the ancient Korean peninsula was studied, and the analysis of the non-metallic inclusions mixed within the metallic structures was interpreted as the ternary phase diagram of the oxide to infer the type of iron ores for the iron products and the temperature of the furnace used to smelt them. Most of the ancient forged iron artifacts showed $Al_2O_3/SiO_2$ with high $SiO_2$ contents and relatively low $Al_2O_3$ contents for iron ore, indicating t hat for $Al_2O_3$ below 5%, it is presumed that magnetic iron ores were reduced to bloom iron (sponge iron) with direct-reduction process for production. The temperature for extraction of wustite for $Al_2O_3$ below 1% was found to be $1,020{\sim}1,050^{\circ}C$. Considering the oxide ternary constitutional diagram of glassy inclusions, the steel-manufacturing temperature was presumed to have been near $1,150{\sim}1,280^{\circ}C$ in most cases, and minimum melting temperature of casting iron part excavated in Daeseong-ri. Gyeonggi was near $1,400^{\circ}C$, and it is thought that hypoeutectic cast iron of about 2.3% carbon was casted and fragility of cast iron was improved by decarburizing in solid state.

THE SCIENCE AND TECHNOLOGY OF MECHANICAL ALLOYING

  • Suryanarayana, C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.11a
    • /
    • pp.10-10
    • /
    • 2000
  • Mechanical alloying (MA) is a powder metallurgy processing technique involving cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. This has now become an established commercial technique in producing oxide dispersion strengthened (ODS) nickel- and iron-based materials. The technique of MA is also capable of synthesizing non-equilibrium phases such as supersaturated solid solutions, metastable crystalline and quasicrystalline intermetallic phases, nanostructures, and amorphous alloys. In this respect, the capabilities of MA are similar to those of another important non-equilibrium processing technique, viz, rapid quenching of metallic melts. however, the science of MA is being investigated only during the past ten years or so. The technique of mechanochemistry, on the other hand, has had a long history and the materials produced this way have found a number of technological applications, e.g., in areas such as hydrogen storage materials, heaters, gas absorber, fertilizers. catalysts, cosmetics, and waste management. The present talk will concentrate on the basic mechanisms of formation of non-equilibrium phases by the technique of MA and these aspects will be compared with those of rapid quenching of metallic melts. Additionally, the variety of technological applications of mechanically alloyed products will be highlighted.

  • PDF

Development of a Non-contacting Capacitive Sensor Based on Thompson-Lampard Theorem for Measurement of ${\mu}m-order$ Displacements (Thompson-Lampard 정리를 적용한 마이크로미터 변위 측정을 위한 비접촉식 전기용량 센서 개발)

  • Kim, Han-Jun;Kang, Jeon-Hong;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.443-448
    • /
    • 2006
  • Non-contacting capacitive sensor based on Thompson-Lampard theorem have been fabricated and characterized for measuring of 때 order displacements. To overcome disadvantages of the existed capacitive sensors of parallel plate type with 2-electrodes and 3-electrodes, the developed new sensor was designed to have 4-electrodes with a constant gap of 0.2mm between the electrodes. Two of the electrodes were used as a high potential electrode and a low one, the other two electrodes were used as guard electrodes. These electrodes were made from copper using RF sputtering system on a sapphire plate with diameter 17 mm and thickness 0.7 mm. This sensor can be used for measuring the distance not only between the sensor and metallic target connected to ground potential but also non-metallic target without ground connection.

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.