DOI QR코드

DOI QR Code

고밀도 금속 플라즈마 전기전도도 예측모델

Prediction Model on Electrical Conductivity of High Density Metallic Plasma

  • Kyoungjin Kim (Department of Mechanical System Engineering, Kumoh National Institute of Technology)
  • 투고 : 2022.10.17
  • 심사 : 2022.12.15
  • 발행 : 2022.12.31

초록

본 연구에서는 현대적 전기식 기폭관의 해석 모델링을 대상으로 실용적 적용이 가능한 금속성 플라즈마 조성비 및 전기전도도 계산모델이 제시되었다. 현 플라즈마 모델은 기폭관 브릿지 전기폭발 현상 시 발생하는 고밀도 플라즈마 영역의 비이상 플라즈마 효과 보정을 포함하였다. 구리 플라즈마를 대상으로 한 계산 결과는 넓은 온도 범위 및 고밀도 영역에서 해당 측정 결과와 전반적으로 잘 일치하여 기폭관 모델링 대상 적용에 적절함을 보여주었다.

This study introduces the calculation model of ionization composition and electrical conductivity for metallic plasma for practical application to modeling and simulation of modern electrical detonators. The present model includes the correction for non-ideality of dense plasma conditions which are expected in electrical explosion of bridge in detonators. The computational results for copper plasma show favorable agreement with experimental data for a wide range of plasma temperature and high density conditions and the model is proper for detonator modeling with good prediction accuracy.

키워드

과제정보

본 연구는 금오공과대학교 학술연구비에 의하여 지원된 논문이다(과제번호: 2019-104-002).

참고문헌

  1. Kim, K., Kim, K.-H. and Jang, S.-G., "Bridge Burst Characteristics of Aluminum and Copper Thin-Film Bridges in Electrical Initiation Devices," Korean Journal of Metals and Materials, Vol. 56, No. 3, pp. 235-243, 2018.
  2. Wang, G., He, J., Zhao, J., Tan, F., Sun, C., Mo, J., Xong, X. and Wu, G., "The Techniques of Metallic Foil Electrically Exploding Driving Hypervelocity Flyer to More Than 10 km/s for Shock Wave Physics Experiments," Review of Scientific Instruments, Vol. 82, pp. 095105-1-8, 2011.
  3. Rolader, G. E. and Batteh, J. H., "Thermodynamic and Electrical Properties of Railgun Plasma Armatures," IEEE Transactions on Plasma Science, Vol. 17, No. 3, pp. 439-445, 1989. https://doi.org/10.1109/27.32252
  4. Kim, K., "Transient Flowfield Characteristics of Polycarbonate Plasma Discharge from Pulse-Powered Electrothermal Gun Operation," Journal of Thermal Spray Technology, Vol. 17, No. 4, pp. 517-524, 2008. https://doi.org/10.1007/s11666-008-9204-2
  5. Spitzer, L., Physics of Fully Ionized Gases, Interscience, New York, NY, U.S.A., 1956.
  6. Zollweg, R. J. and Liebermann, R. W., "Electrical Conductivity of Nonideal Plasmas," Journal of Applied Physics, Vol. 62, No. 9, pp. 3621-3627, 1987. https://doi.org/10.1063/1.339265
  7. Kovitya, P., "Physical Properties of High-Pressure Plasmas of Hydrogen and Copper in the Temperature Range 5000-60000 K," IEEE Transactions on Plasma Science, Vol. PS-13, No. 6, pp. 587-594, 1985.
  8. Zaghloul, M. R., "A Simple Theoretical Approach to Calculate the Electrical Conductivity of Nonideal Copper Plasma," Physics of Plasmas, Vol. 15, No. 4, pp. 042705-1-8, 2008.
  9. Kim, D.-K. and Kim, I., "Calculation of Ionization Balance and Electrical Conductivity in Nonideal Aluminum Plasma," Physical Review E, Vol. 68, pp. 056410-1-6, 2003.
  10. Clerouin, J., Noiret, P., Blottiau, P., Recoules, V., Siberchicot, B., Renaudin, P., Blancard, C., Faussurier, G., Holst, B. and Starrett, C. E., "A Database for Equations of State and Resistivities Measurements in the Warm Dense Matter Regime," Physics of Plasmas, Vol. 19, pp. 082702-1-15, 2012.
  11. Kim, K, Kwak, H.S., Kim, K.-H. and Jang, S.-G., "Analytic Study on Plasma Expansion of Thin-Film Bridge Burst and Flyer Acceleration in Exploding Foil Initiator," 45th Korean Society of Propulsion Engineers Fall Conference, Gyeongju, Korea, pp. 655-659, Nov. 2015.
  12. Powell, J. D. and Zielinski, A. E., "Theory and Experiment for an Ablating-Capillary Discharge and Application to Electrothermal-Chemical Guns," U.S. Army Ballistic Research Laboratory, Technical Report, BRL-TR-3355, 1992.
  13. Burgess, T. J., "Electrical Resistivity Model of Metals," 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics, Santa Fe, NM, U.S.A., 1986.
  14. Luo, B.-Q., Sun, C.-W., Zhao, J.-H. and He, J., "Unified Numerical Simulation of Metallic Foil Electrical Explosion and Its Applications," IEEE Transactions on Plasma Science, Vol. 41, No. 1, pp. 49-57, 2013.
  15. Batteh, J., Powell, J., Sink, D., and Thornhill, L., "A Methodology for Computing Thermodynamic and Transport Properties of Plasma Mixtures in ETC Injectors," IEEE Transactions on Magnetics, Vol. 31, No. 1, pp. 388-393, 1995. https://doi.org/10.1109/20.364656
  16. Kim, K., "Numerical Simulation of Capillary Plasma Flow Generated by High-Current Pulsed Power," International Journal of Thermal Sciences, Vol. 44, No. 11, 2005, pp. 1039-1046. https://doi.org/10.1016/j.ijthermalsci.2005.04.007
  17. DeSilva, A. W. and Katsouros, J. D., "Electrical Conductivity of Dense Copper and Aluminum Plasmas," Physical Review E, Vol. 57, No. 5, 1998, pp. 5945-5951.