• Title/Summary/Keyword: non-metal

Search Result 1,686, Processing Time 0.024 seconds

A Study on the Characteristics of $PM_{10}$ and Air-borne Metallic Elements Produced in the Industrial City (산업도시 대기 중$PM_{10}$의 농도 및 금속원소 성분의 특성 연구)

  • 나덕재;이병규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.23-35
    • /
    • 2000
  • PM10, which is below 10 ${\mu}{\textrm}{m}$ in a diameter, has a high deposition in the lung or the bronchus by breathing and is generally composed of a lot of organic matters, viruses, algae, mold, and metallic elements that are very toxic to people. This study identified the characteristics of concentration of PM10 and air-borne jmetallic elements produced in the industrial city, Ulsan, and analyzed the correlatuion between sources and generation patterns of PM10 and metallic elements. We classified the five areas(green, residential, heavy traffic, mechanic, and petrochemcal and non-ferrous metal) which might have different characteristics of sources of PM10 and metallic elements. The average concentrations of PM10 in the five areas were as follows(petrochemical and non-ferrous metal(99.9$\mu\textrm{g}$/㎥)>mechanic(77.5 $\mu\textrm{g}$/㎥)>heavy traffic(47.1 $\mu\textrm{g}$/㎥)>residential(39.3 $\mu\textrm{g}$/㎥)>green(32.8 $\mu\textrm{g}$/㎥)). Those of petrochemical and non-ferrous metal areas were higher than other areas. In this study, the average concentration trend of metallic elements contained in PM10 are shown as follows: Fe>Zn>Pb>Cu>Mn>Cr>As>Cd>Sn>Hg, respectively. The metallic elements identified in PM10 showed the highest concentration in the petrochemical and non-ferrous areas. Metal combinations showed that a high correlation among concentrations of heavy metals were as follows: As, Cd and Fe in the residential area; Zn, Mn, Cu and Pb in the mechanical area; and Zn, Cu, As, Pb in the petrochemical and non-ferrous industrial area.

  • PDF

A Study on Concentrations of Heavy Metal in Blood and Urine of Local Area in Korea (국내 일부 지역주민의 혈액과 요중 중금속 농도에 관한 연구)

  • Im, Ji-Young;Chung, Eun-Kyung;Park, Hee-Jin;Yu, Seungdo;Jang, Bong-Ki;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.59-72
    • /
    • 2013
  • The purpose of this study is to assess the effects of heavy metal concentrations in the blood and urine of the general population. This research had been conducted from April to December 2008, studying 545 residents of Daejeon and Chungcheong Province. Through the concentrations of heavy metals(Pb, Cd, Hg, As, Mn) in the biota samples and questionnaires, the residents heavy metal exposure level and the influential factors according to personal characteristics or lifestyle were evaluated. As to the heavy metal concentration in the blood and urine of the comparing region, were As and Mn statistically significant(p<0.01, p<0.05). Blood lead and urinary mercury concentrations were higher in males than females. The heavy metal concentration for each age group increased blood mercury. The concentration of all heavy metals were higher in the drinkers than in the non-drinkers. Blood lead and mercury concentrations were higher in the smokers than in the non-smokers, but the urinary cadmium, arsenic and blood manganese was higher in the non-smokers than in the smokers. As to the blood lead and urinary cadmium concentration according to the food preference fish showed high concentration. To clarify the factors affecting the heavy metal concentration in biota among subjects multiple regression analysis was conducted. As a results, it turned out that as to lead content in blood, sex, age and smoking have influence on the subjects with explanatory adequacy of 14.0 %. These results demonstrated that the factors affected the concentrations of heavy metals in blood and urine. The results of this study could be used as the foundational data for setting the health risk assessment.

A Simulation Study on the Removal Process of the Heavy Metal Ion in Aqueous Solution by the Functionalized Silica Beads (기능화된 실리카 비드를 이용한 수용액상의 중금속 이온의 제거공정에 대한 모사 연구)

  • Woo, Yoon-Hwan;Choo, Chang-Upp
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.150-155
    • /
    • 2011
  • The removal process of heavy metal ion in aqueous solution by the functionalized silica bead was simulated using the finite difference method. Equilibrium model and non-equilibrium model were proposed and the effects of dimensionless groups and various parameters were investigated. Freundlich isotherm was used in equilibrium model and 1st order adsorption rate expression was assumed in non-equilibrium model. The comparison results by the predictions of equilibrium and non-equilibrium models showed good agreement. The predictions of equilibrium model were compared with experimental results reported in literature and showed the marginal agreement.

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.

Facile and Clean Synthetic Route to Non-Layered Two-Dimensional ZIF-67 Nanosheets

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • Two-dimensional (2D) metal organic framework (MOF) nanosheets (NSs) have recently gained considerable interest owing to their structural advantages, such as large surface area and exposed active sites. Two different types of 2D MOF NSs have been reported, including inherently layered MOFs and non-layered ones. Although several studies on inherently layered 2D MOFs have been reported, non-layered 2D MOFs have been rarely studied. This may be because the non-layered MOFs have a strong preference to form three-dimensionality intrinsically. Furthermore, the non-layered MOFs are typically synthesized in the presence of the surfactant or modulator, and thus developing facile and clean synthetic routes is highly pursued. In this study, a facile and clean synthetic methodology to grow non-layered 2D cobalt-based zeolitic imidazolate framework (ZIF-67) NSs is suggested, without using any surfactant and modulator at room temperature. This is achieved by directly converting ultrathin α-Co(OH)2 layered hydroxide salt (LHS) NSs into non-layered 2D ZIF-67 NSs. The comprehensive characterizations were conducted to elucidate the conversion mechanism, structural information, thermal stability, and chemical composition of the non-layered 2D ZIF-67. This facile and clean approach could produce a variety of non-layered 2D MOF NS families to extend potential applications of MOF materials.

A Study on the Uniform Metal-Droplet Deposition Using Laser (레이저를 이용한 균일 금속액적 적층에 관한 연구)

  • 유성복;김용욱;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.667-670
    • /
    • 2002
  • Uniform metal-droplet deposition using laser is analyzed. Using the variation principle and modeling the semi-solid phase as a non-Netwonian slurry, this model can greatly save the computational expenses that conventional numerical procedures have suffered from. The simulation results revealed that the developed model could reasonably describe the collision behavior of molten metal with solid surface. Simulations were made with variation of the falling distance and time.

  • PDF

Evaluation of marginal and internal gaps in single and three-unit metal frameworks made by micro-stereolithography

  • Kim, Dong-Yeon;Lee, Ha-Na;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.239-243
    • /
    • 2017
  • PURPOSE. The purpose of this study is to compare single and three-unit metal frameworks that are produced by micro-stereolithography. MATERIALS AND METHODS. Silicone impressions of a selected molar and a premolar were used to make master abutments that were scanned into a stereolithography file. The file was processed with computer aided design software to create single and three-unit designs from which resin frameworks were created using micro-stereolithography. These resin frameworks were subjected to investment, burnout, and casting to fabricate single and three-unit metal ones that were measured under a digital microscope by using the silicone replica technique. The measurements were verified by means of the Mann-Whitney U test (${\alpha}=.05$). RESULTS. The marginal gap was $101.9{\pm}53.4{\mu}m$ for SM group and $104.3{\pm}62.9{\mu}m$ for TUM group. The measurement of non-pontics in a single metal framework was $93.6{\pm}43.9{\mu}m$, and that of non-pontics in a three-unit metal framework was $64.9{\pm}46.5{\mu}m$. The dimension of pontics in a single metal framework was $110.2{\pm}61.4{\mu}m$, and that of pontics in a three-unit metal framework was $143.7{\pm}51.8{\mu}m$. CONCLUSION. The marginal gap was smaller for the single metal framework than for the three-unit one, which requires further improvement before it can be used for clinical purposes.

Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.7
    • /
    • pp.9.1-9.13
    • /
    • 2017
  • Background: Metal-responsive transcription factor-1 (MTF-1) is a key transcriptional regulator playing crucial roles in metal homeostasis and cellular adaptation to diverse oxidative stresses. In order to understand cellular pathways associated with metal regulation and stress responses in Pacific abalone (Haliotis discus hannai), this study was aimed to isolate the genetic determinant of abalone MTF-1 and to examine its expression characteristics under basal and experimentally stimulated conditions. Results: The abalone MTF-1 shared conserved features in zinc-finger DNA binding domain with its orthologs; however, it represented a non-conservative shape in presumed transactivation domain region with the lack of typical motifs for nuclear export signal (NES) and Cys-cluster. Abalone MTF-1 promoter exhibited various transcription factor binding motifs that would be potentially related with metal regulation, stress responses, and development. The highest messenger RNA (mRNA) expression level of MTF-1 was observed in the testes, and MTF-1 transcripts were detected during the entire period of embryonic and early ontogenic developments. Abalone MTF-1 was found to be Cd inducible and highly modulated by heat shock treatment. Conclusion: Abalone MTF-1 possesses a non-consensus structure of activation domains and represents distinct features for its activation mechanism in response to metal overload and heat stress. The activation mechanism of abalone MTF-1 might include both indirect zinc sensing and direct de novo synthesis of transcripts. Taken together, results from this study could be a useful basis for future researches on stress physiology of this abalone species, particularly with regard to heavy metal detoxification and thermal adaptation.

Preparations of the Cross-linked Chitosan Based on a Marine Natural Product with Epichlorohydrine for the Exclusion of Heavy Metal Ions from the Various Wastewater and Its Effect of Crosslinking Ratio (각종 폐수로부터 중금속 이온을 제거하기 위한 Epichlorohydrine-가교키토산의 제조 및 가교도의 효과)

  • Park, Young-Mi;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.8 no.5
    • /
    • pp.577-584
    • /
    • 2006
  • The binding of heavy metal ions onto cross-linked chitosan in dilute aqueous solution has been investigated as a function of pH (4.0 and 7.0), agitation period (10-180min) and concentration of various metal cations (5, 10, 50 and 100ppm). In order to obtain adsorbents that are insoluble and stable, and prevent the dissolution loss of chitosan into an acidic aqueous solution, chitosan flakes were cross-linked with epichlorohydrine (ECH) and its adsorption behavior was compared with that of the non cross-linked chitosan. An advantage of ECH is that it does not eliminate the cationic amine functional group of chitosan. In terms of adsorption ratio, the chitosan cross-linked at an ECH was inferior to original chitosan and was found that chitosan has a selectivity much remarkable than the cross-linked chitosan in low concentrated metal solutions. However, no significant decreases in the adsorption ratios were observed between the cross-linked ECH-chitosan and the non cross-linked chitosan concerning the adsorption of $Ni^{2+}$, $Co^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ acidic solution.

An Experimental study on the bond strength according to the surface treatment of metal alloy for porcelain fused metal crown (-금속(金屬) 표면처리방법(表面處理方法)에 따른 비귀금속합금(非貴金屬合金)과 도재(陶材)와의 결합강도(結合强度)에 관(關)한 실험적(實驗的) 연구(硏究)-)

  • Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.11 no.1
    • /
    • pp.83-88
    • /
    • 1989
  • This investigation was performed to evaluate the effect of four different preteatment techniques on the bond strength of porcelain to non-precious metal alloy. Samples of total of 40 were divided into 4 groups according to the 4 variables which included the 50$\mu$alumina oxide air abrasion, method, the as retention bead method, the L-retention bead method, the Etching method. The completed metal-porcelain samples were compressed in Instron loading machine until gross fracture occured to examine the effect of the complex variables on the bond strength of porcelain to non precious metal alloy. The result obtained were as follows : 1. The difference of bond strength according to four different pretreatment techniques was statistically significant(p<0.01). 2. The difference of bond strength between the ss-retention bead method and the L-retention bead method was not significant statistically(p>0.05) 3. The difference of bond strength between the retention bead method and the etching method was statistically significant(p<0.01). 4. The difference of bond strength between the retention bead method and the 50$\mu$alumina oxide air abrasion method was statistically significant(p<0.01). 5. The difference of bond strength between the etching method and the 50$\mu$alumina oxide air abrasion method was statistically significant(p<0.01).

  • PDF