DOI QR코드

DOI QR Code

A Simulation Study on the Removal Process of the Heavy Metal Ion in Aqueous Solution by the Functionalized Silica Beads

기능화된 실리카 비드를 이용한 수용액상의 중금속 이온의 제거공정에 대한 모사 연구

  • Woo, Yoon-Hwan (Department of Mechanical Systems Engineering, Hansung University) ;
  • Choo, Chang-Upp (Department of Mechanical Systems Engineering, Hansung University)
  • 우윤환 (한성대학교기계시스템공학과) ;
  • 주창업 (한성대학교기계시스템공학과)
  • Received : 2011.06.13
  • Accepted : 2011.06.21
  • Published : 2011.06.30

Abstract

The removal process of heavy metal ion in aqueous solution by the functionalized silica bead was simulated using the finite difference method. Equilibrium model and non-equilibrium model were proposed and the effects of dimensionless groups and various parameters were investigated. Freundlich isotherm was used in equilibrium model and 1st order adsorption rate expression was assumed in non-equilibrium model. The comparison results by the predictions of equilibrium and non-equilibrium models showed good agreement. The predictions of equilibrium model were compared with experimental results reported in literature and showed the marginal agreement.

본 연구에서는 수용액상의 금속이온을 기능화된 구형의 실리카 담체를 이용하여 제거하는 공정에 대하여 유한 차분법을 이용하여 모사하였다. 평형 모델과 비평형 모델을 수립하여 무차원 변수와 각종 변수에 대한 영향을 살펴보았으며 평형 모델과 비평형 모델의 결과를 비교하였다. 평형모델의 경우 Freundlich 등온식을 사용하였으며 비평형 모델의 경우 1차 반응속도를 가정하였다. 평형모델과 비평형 모델의 경우 변수값에 따라 비슷한 경향을 나타내었으며 금속이온 제거공정의 효율을 예측할 수 있었다. 문헌에 제시된 실험값을 활용하여 평형 모델의 예측 결과를 비교한 결과 부합되는 결과를 나타내었다.

Keywords

References

  1. Yi, J. and Tavlarides, L. L, "Modeling Chemically Active Liquid Membranes in Tubular Inorganic Supports," AIChE J., 41(6), 1403-4122 (1995). https://doi.org/10.1002/aic.690410607
  2. Lee, W., Kim, C., and Yi, J., "Selective Recovery of Silver Ions from Aqueous Solutions Using Modified Silica Beads with Adogen 354," J. Chem. Technol. Biot., 77, 1255-1261 (2002). https://doi.org/10.1002/jctb.702
  3. Bibby, A., and Mercier, L., "Mercury(II) Ion Adsorption Behaviour in Thiol-Functionalized Mesoporous Silica Microspheres," Chem. Mater., 14, 1591-1597 (2002). https://doi.org/10.1021/cm0112082
  4. Kim, Y. S., Kusakabe, K., and Yang, S. M., "Microporous Silica Membrane Synthesized on an Ordered Mesoporous Silica Sublayer," Chem. Mater., 15, 612-620 (2003). https://doi.org/10.1021/cm020136r
  5. Walcarius, A., Etienne, M., and Bessiere, J., "Rate of Access to the Binding Sites in Organically Modified Silicates. 1. Amorphous Silica Gels Grafted with Amine or Thiol Groups," Chem. Mater., 14, 2757-2766 (2002). https://doi.org/10.1021/cm021117k
  6. Boissiere, C., Martines, M. A. U., Kooyman, R. J., Kruijff, T. R., Larbot, A., and Prouzet, E., "Ultrafiltration Membrane Made with Mesoporous MSU-X Silica," Chem. Mater., 15, 460-469 (2003). https://doi.org/10.1021/cm021319g
  7. Oh, S., Kang, T., Kim, H., Moon, J., Hong, S., and Yi, J., "Preparation of Novel Ceramic Membranes Modified Mesoporous Silica with 3-aminopropyltriethoxysilane (APTES) and its Application to $Cu^{2+}$ Separation in the Aqueous Phase," J. Membrane. Sci., 301, 118-125 (2007). https://doi.org/10.1016/j.memsci.2007.06.006
  8. Rengaraj, S., Kim, Y., Joo, C. K., and Yi, J., "Removal of Copper from Aqueous Solution by Aminated and Protonated Mesoporous Aluminas: Kinetic and Equilibrium," J. Colloid Interf. Sci., 273, 14-21 (2004). https://doi.org/10.1016/j.jcis.2004.01.007
  9. Sherwood, T. K., Pigford, R. L., and Wilke, C. R., Mass Transfer, McGraw Hill, Tokyo, 1975, pp. 241-245.