• Title/Summary/Keyword: non-local conditions

Search Result 247, Processing Time 0.025 seconds

Applying CVM for the Reinvestment Ratio of Development Profits Generated by Renewing Old Industrial Park in Daegu Metropolitan City (CVM 분석을 이용한 개발이익 재투자 비율 설정에 관한 연구: 대구광역시 노후산업단지 재생사업을 중심으로)

  • Shin, Woo-Hwa;Shin, Woo-Jin
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.27-44
    • /
    • 2022
  • In December 2019, the Ministry of Land, Infrastructure and Transport announced the revision of the Enforcement Decree of the Industrial sites and Development Act. In this revision, the reinvestment ratio of development profits generated by renewing the old industrial park is delegated to the local government ordinance. According to this announcement, the reinvestment ratio can be adjusted to less than 50% of sales revenue from construction projects and 25% of land sales for non-industrial use depending on local government conditions. This study aims to investigate the policy rationale for the adjusted ratio of reinvestment in development profits and explore how Daegu City can use this policy when revising ordinances in the future. A survey was conducted with a total of 320 experts, including public corporations, public officials, and industrial site workers in the Industrial Complex Committee. We employ contingent value measurement (CVM) based on 262 valid responses. The results showed that 27% of sales from the construction business and 22% of sales from non-industrial land were derived with an appropriate reinvestment ratio. Although the results in this study might not be generalized in other regions, we provide a potential reference for other local governments who are interested in ordinance revisions in the future. Another contribution of this study is to suggest the statistical method to derive the relevant ratio.

Relationship between Spatial Inclusivity and Social Participation According to Degree of Disability (장애 정도에 따른 공간적 포용성과 사회참여의 관계)

  • Kim, Si Hwa;Park, In Kwon
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.3
    • /
    • pp.65-83
    • /
    • 2023
  • The purpose of this study is to conceptually define "spatial inclusivity" and empirically examine the impact of disability severity and spatial inclusivity on social participation among individuals experiencing physical discomfort. The social and spatial environment of the residential area is crucial for individuals with disabilities who face limited activity range and complex barriers due to physical constraints. In this study, spatial inclusivity from the perspective of people with disabilities is defined as establishment of equal relationships with non-disabled individuals within the local community, as well as the availability of basic facilities and services in a safe urban space that allows for access and utilization. This concept consists of three dimensions: individual networks, social environment, and physical environment. The physical environment encompasses safety levels, natural environment, living environment, public transportation conditions, medical services in residential areas. We used the 2019 Community Health Survey to examine the relationship between disability severity, spatial inclusivity, and social participation using a two level regression model. The findings are as follows: Firstly, personal relationships at the individual level and the physical environment at the local level have a positive impact on social participation. Secondly, when identifying dividing the physical environment into five sub-factors, no significant influence of individual factors is found. Thirdly, trustworthy and friendly social environment at the local level has a negative impact on social participation. These results provide empirical evidence that spatial inclusivity has an effect on the social participation of individuals with disabilities and suggest implications for urban planning to create and enhance conditions for the social participation of individuals with disabilities.

Characteristics of Ozone Concentrations around an Urban Valley based on the Intensive Air Quality Measurement during Spring and Summer of 2006 (2006년 봄, 여름철 대기오염물질 집중측정을 통한 도시 계곡지역의 오존농도 특성 분석)

  • Song, Sang-Keun;Kim, Yoo-Keun;Kang, Jae-Eun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.289-303
    • /
    • 2009
  • The chemical and meteorological effects on the concentration variations of ozone ($O_3$) were evaluated based on the intensive air quality measurement (5 pollutants and aromatic volatile organic compounds (AVOCs)) in and out-side an urban valley during spring and summer of 2006. The 5 pollutants measured in the study area include $O_3$, $NO_2$, NO, $PM_{10}$, and CO; the AVOCs include benzene (BEN), toluene (TOL), ethylbenzene (EB), m,p-xylene (MPX), and o-xylene (OX). For the purpose of this study, study areas were classified into two categories: valley area (VA) with a semi-closed topography covering a number of industrial complex, public building, and mountains and non-valley area (NVA) surrounding the suburban and residential areas. In general, the mean concentration levels of most pollutants (except for $PM_{10}$) in the VA were higher than those in the NVA. It was found that the average $O_3$ increase in the VA during spring might result from the combined effects such as the photochemical production from diverse anthropogenic sources and the $O_3$ accumulation due to geographical features (e.g., the semi-closed topography) and wind conditions (e.g., a low wind speed). In addition, the nocturnal $O_3$ increase in the VA during spring was primarily caused by local wind conditions (e.g., mountain and valley winds) with the low wind speed (approximately $1{\sim}2\;m\;s^{-1}$). On the other hand, the $O_3$ difference between the two areas during summer might be because of the photo-chemical production with the $O_3$ precursors (especially the AVOCs) rather than the contribution of wind conditions.

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.53-60
    • /
    • 2009
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking; and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.603-607
    • /
    • 2004
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Cooperative Communication Scheme Based on channel Characteristic for Underwater Sensor Networks (수중 센서 네트워크를 위한 채널 특성기반의 협력 통신 기법)

  • Ji, Yong-Joo;Choi, Hak-Hui;Lee, Hye-Min;Kim, Dong-Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.21-28
    • /
    • 2016
  • This paper presents a cooperative transmission scheme for underwater acoustic sensor networks to improve packet transmission rate and reduce energy consumption. Source node transmits duplicated information relayed by distributed antennas called a virtual antenna array. Destination node combines that information to reduce packet error rate. The suggested cooperative scheme enhances the reliability by providing high diversity gains through intermediate relay nodes to overcome the distinct characteristics of the underwater channel, such as high transmission loss, propagation delay, and ambient noises. It is suggested that the algorithm select destinations and potential relays from a set of neighboring nodes that utilize distance cost, the residual energy of each node and local measurement of the channel conditions into calculation. Simulation results show that the proposed scheme reduces average energy consumption, response time, and increases packet delivery ratio compared with the SPF(Shortest Path First) and non-cooperative scheme using OPNET Moduler.

Measurements of Remote Micro Displacements of the Piping System and a Real Time Diagnosis on Their Working States Using a PIV and a Neural Network (PIV와 신경망을 이용한 배관시스템 원격 미세변위 측정과 실시간 작동상태 진단)

  • Jeon, Min Gyu;Cho, Gyeong Rae;Oh, Jung Soo;Lee, Chang Je;Doh, Deog Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.264-274
    • /
    • 2013
  • Piping systems play an important role in gas and oil transferring system. In the piping system, there are many elements, such as valves and flow meters. In order to check their normal operating conditions, each signal from each element is displayed on the monitor in the pipe control room. By the way, there are several accidental cases in the piping system even if all signals from the local elements are judged to be normal on the monitor in the control room. Further, opposite cases often happen even the monitor shows abnormal while the local elements work normal. To overcome this abnormal functions, it is not so easy to construct the environment in which sensors detecting the working states of all elements installed in the piping system. In this paper, a new non-contact measurement technique which can calculate the elements' delicate displacements by using a PIV(particle image velocimetry) and diagnose their working states by using a neural network is proposed. The measurement system consists of a host computer, a micro system, a telescope and a high-resolution camera. As a preliminary test, the constructed measurement system was applied to measure delicate vibrations of mobile phones. For practical application, a pneumatic system was measured by the constructed system.

Scanning Kelvin Probe Microscope analysis of Nano-scale Patterning formed by Atomic Force Microscopy in Silicon Carbide (원자힘현미경을 이용한 탄화규소 미세 패터닝의 Scanning Kelvin Probe Microscopy 분석)

  • Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.32-32
    • /
    • 2009
  • Silicon carbide (SiC) is a wide-bandgap semiconductor that has materials properties necessary for the high-power, high-frequency, high-temperature, and radiation-hard condition applications, where silicon devices cannot perform. SiC is also the only compound semiconductor material. on which a silicon oxide layer can be thermally grown, and therefore may fabrication processes used in Si-based technology can be adapted to SiC. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, we investigated that the local oxide growth on SiC under various conditions and demonstrated that an increased (up to ~100 nN) tip loading force (LF) on highly-doped SiC can lead a direct oxide growth (up to few tens of nm) on 4H-SiC. In addition, the surface potential and topography distributions of nano-scale patterned structures on SiC were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the nano-scale patterned on SiC was higher than that of original SiC surface. The results confirm the concept of the work function and the barrier heights of oxide structures/SiC structures.

  • PDF

Improvement in the Simulation of Wind Fields Over the Complex Coastal Area, Korea (한반도 복잡 해안지역의 바람장 모의 개선)

  • Kim, Yoo-Keun;Bae, Joo-Hyun;Jeong, Ju-Hee;Kweon, Ji-Hye;Seo, Jang-Won;Kim, Yong-Sang
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.417-430
    • /
    • 2006
  • We focused on improvement in simulation of wind fields for the complex coastal area. Local Analysis and Prediction System(LAPS) was used as a data assimilation method to improve initial conditions. Case studies of different LAPS inputs were performed to compare improvement of wind fields. Five cases have been employed : I) non data assimilation, II) all available data, III) AWS, buoy, QuikSCAT, IV) AWS, buoy, wind profiler, V) AWS, buoy, AMEDAS. Data assimilation can supplement insufficiency of the mesoscale model which does not represent detailed terrain effect and small scale atmospheric flow fields. Result assimilated all available data showed a good agreement to the observations rather than other cases and estimated veil the local meteorological characteristics including sea breeze and up-slope winds. Result using wind profiler data was the next best thing. This implies that data assimilation with many high-resolution sounding data could contribute to the improvements of good initial condition in the complex coastal area. As a result, these indicated that effective data assimilation process and application of the selective LAPS inputs played an important role in simulating wind fields accurately in a complex area.

Heat transfer characteristics around a circular combustion chamber of kerosene fan heater (석유 팬 히터의 연소실 주변 열전달 특성)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.551-561
    • /
    • 1998
  • This paper was studied to understand the characteristics of heat transfer coefficients and surface temperature distributions around a circular combustion chamber within the heat-intercept duct of kerosene fan heater. The experiment was carried out in the heat-intercept duct of kerosene fan heater attached to the blow-down-type subsonic wind tunnel with a test section of 240 mm * 240 mm * 1200 mm. The purpose of this paper was to obtain the basic data related with normal combustion for new design from conventional kerosene fan heater, and to investigate the effect of surface temperature, local and mean heat transfer coefficients versus flow-rate of convection axial fan according to the variations of heat release conditions from kerosene fan heater during normal combustion. Consequently it was found that (i) the revolution of convection axial fan during combustion had a smaller value than that of non-combustion because of the thermal resistance due to the high temperature in the heat-intercept duct, (ii) the pressure ratio P$_{2}$/P$_{1}$ had a comparatively constant value of 0.844 according to the revolution increase of turbo fan and the heating performance of kerosene fan heater had a range of 1,494 ~ 3,852 kcal/hr, (iii) the local heat transfer coefficient around a circular combustion chamber had a comparatively larger scale in the range of 315 deg. < .theta. < 45 deg. than that in the range of 90 deg. < .theta. < 270 deg. as a result of heat transfer difference between front and back of a circular combustion chamber, and (iv) the mean heat transfer coefficient around a circular combustion chamber increased linearly like a H$_{m}$=95.196Q+104.019 in condition of high heat release according to the increase of flow-rate of axial fan.n.