시계열 모형에서 모수의 수가 많으면 모수추정에 따르는 오차가 커지게 되므로 예측을 하는데 많은 어려움이 있다. 만약 여러개의 시계열 자료들이 동일한 모형에서부터 얻어졌다고 하는 동질성 가설이 채택되면 모수축약을 이룰 수 있고, 더 좋은 예측값을 얻을 수 있다. 비선형 시계열 패널 자료는 각각의 시계열마다 모수들이 있기 때문에 매우 많은 모수가 존재하게되고, 모수의 수가 많으면 모수추정에 따르는 오차가 커지게 되어 예측의 정확도가 떨어지게 된다. 패널내에 존재하는 독립적인 여러 시계열들의 동질성이 만족되면 시계열을 종합하여 모수를 추정하고 검정할 수 있다. m개의 독립적인 비선형 시계열 패널 자료의 동질성 검정을 알아보기 위하여 모형을 설정하고 이 모형에 대한 정상성 조건을 구하였고, 동질성 검정통계량을 유도했으며, 구한 검정 통계량의 극한분포가 ${\chi}^2$ 분포를 따르는 것을 보였다. 실증분석에 있어서는 비선형 시계열 자료중 중선형 시계열 모형의 동질성 검정을 하고, 실제 우리나라 주식자료를 2개의 집단으로 나누어 비선형 시계열 패널 자료의 동질성 검정에 대한 분석을 하였다.
물 사용량 예측은 최적의 용수 공급 운영 방안을 수립하고 전력 소비량 절감을 위하여 꼭 필요한 과정이라고 할 수 있다. 그러나 수용가 단위의 물 사용량은 용도, 사용자의 패턴, 날씨 등의 다양한 요인으로 인해 변화하는 비선형적 특성을 지니고 있다. 따라서 본 연구에서는 비선형적인 수용가 단위의 물 사용량을 예측하기 위하여 다양한 기법들을 연계한 KWD 프레임워크를 제안하고자 하였다. 즉, 먼저 개별 수용가 마다 용도에 따른 유사한 패턴을 파악하기 위해 K-means (K) 군집분석을 수행하였고, 잡음성분을 제거함으로써 핵심적인 주기패턴을 파악하기 위해 Wavelet (W) 방법을 적용하였다. 또한 비선형적 특성을 학습시키기 위해 Deep learning (D) 알고리즘을 적용하였다. 그리고 기존의 선형 시계열 모형인 ARMA 모형과 비교하여 KWD 프레임워크의 성능을 분석하였다. 그 결과 제안된 모형의 상관성은 92%, ARMA 모형은 약 39%로 KWD 프레임워크가 2배 이상의 성능을 가지는 것으로 분석되었다. 따라서 본 연구에서 제안한 방법을 활용할 경우 정확한 물 사용량 예측이 가능해질 것이며, 상황에 따른 최적의 공급 방안을 수립할 수 있을 것이다.
Sleep is an essential process maintaining the life cycle of the human. In parallel with physiological, cognitive, subjective, and behavioral changes that take place during the sleep, there are remarkable changes in the electroencephalogram (EEG) that reflect the underlying electro-physiological activity of the brain. However, analyzing EEG and relating the results to clinical observations is often very hard due to the complexity and a huge data amount. In this article, I introduce several linear and non-linear tools, developed to analyze a huge time series data in many scientific researches, and apply them to EEG to characterize various sleep states. In particular, the spectral analysis, detrended fluctuation analysis (DFA), and synchrony analysis are administered to EEG recorded during nocturnal polysomnography (NPSG) processes and daytime multiple sleep latency tests (MSLT). I report that 1) sleep stages could be differentiated by the spectral analysis and the DFA ; 2) the gradual transition from Wake to Sleep during the sleep onset could be illustrated by the spectral analysis and the DFA ; 3) electrophysiological properties of narcolepsy could be characterized by the DFA ; 4) hypnic jerks (sleep starts) could be quantified by the synchrony analysis.
An increasing pattern of extreme rainfall recently affected the rural infrastructures with catastrophic damage, especially the overtopping of a fill dam embankment in the Republic of Korea. The overtopping was caused by the sudden increase in reservoir water level over the dam crest level, and it was not easy work to predict a priori because of its non-linear behavior. Fuzzy time series (FTS) is a fuzzy-logic inference procedure and is suited to apply to non-linear prediction methods such as machine learning. This study used the Wangshin reservoir and Goesan-dam cases, which experienced overtopping in 2023 and 2022, respectively. Wangshin Reservoir was a typical agricultural fill dam and needed to stack more available data, with only the daily storage rate (water level) of 7 years, starting on 2 May 2016. Therefore, we used Goesan-dam data to select appropriate variables and compare the analysis result, which was stacked with about 17 years of records. The analyses adapted LSTM to compare with FTS. As a result, the reservoir water level was applied to predict the overtopping water level, and it was shown that the FTS method could predict the actual water levels effectively according to the result of comparison with LSTM. Then, the FTS method was expected to predict reservoir water level a priori to make appropriate countermeasures on overtopping events as one of the alternatives.
Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.
We studied how linear and nonlinear heart rate dynamics differ between normal fetuses and uncomplicated small-forgestational age (SGA) fetuses, aged 32-40 weeks' gestation. We analyzed each fetal heart rate time series for 20 min and quantified the complexity (nonlinear dynamics) of each fetal heart rate (FHR) time series by approximate entropy (ApEn) and correlation dimension (CD). The linear dynamics were analyzed by canonical correlation analysis (CCA). The ApEn and CD of the uncomplicated SGA fetuses were significantly lower than that of the normal fetuses in all three gestational periods (32-34, 35-37, 38-40 weeks). Canonical correlation ensemble in SGA fetuses is slightly higher than normal ones in all three gestational periods, especially at 35-37 weeks. Irregularity and complexity of the heart rate dynamics of SGA fetuses are lower than that of normal ones. Also, canonical ensemble in SGA fetuses is higher than in normal ones, suggesting that the FHR control system has multiple complex interactions. Along with the clear difference between the two groups' non-linear chaotic dynamics in FHR patterns, we clarified the hidden subtle differences in linearity (e.g. canonical ensemble). The decrease in non-linear dynamics may contribute to the increase in linear dynamics. The present statistical methodology can be readily and routinely utilized in Obstetrics and Gynecologic fields.
비선형 동력학 시스템으로 구성된 전력 수요의 시계열 데이터를 예측하기 위해 적용된 신경망 및 퍼지 적응 알고리즘 등은 예측오차가 상대적으로 크게 나타났다. 이는 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질에 기인하며 이중 초기값에 민감한 의존성은 장기적인 예측을 더욱더 어렵게 하는 요인으로 작용한다. 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질을 정량 및 정성적인 방식으로 분석 을 수행하고, 시스템 동력학적 특성의 정량분석에 이용되는 Lyapunov 지수를 이용하여 어트랙터 재구성, 다차원 카오스 시계열 데이터를 예측하는 방식으로 수요예측 시뮬레이션을 수행하고 결과를 비교 평가하여 기존 제안방식보다 실용적이며 효과적임을 확인한다.
비선형 동력학 시스템으로 구성된 전력 수요의 시계열 데이터를 예측하기 위해 적용된 신경망 및 퍼지 적응 알고리즘 등은 예측오차가 상대적으로 크게 나타났다. 이는 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질에 기인하며 이중 초기값에 민감한 의존성은 장기적인 예측을 더욱더 어렵게 하는 요인으로 작용한다. 전력수요 시계열 데이터가 가지고 있는 카오스적인 성질을 정량 및 정성적인 방식으로 분석을 수행하고, 시스템 동력학적 특성의 정량분석에 이용되는 Lyapunov 지수를 이용하여 어트랙터 재구성, 다차원 카오스 시계열 데이터를 예측하는 방식으로 수요예측 시뮬레이션을 수행하고 결과를 비교 평가하여 기존 제안방식보다 실용적이며 효과적임을 확인한다.
The work analyzes the existing situation and defines special problems concerning traffic accidents in the two countries. The report is divided into three parts: 1) Using the global approach of SMEED, the data were evaluated using multiple regression analysis, and homogeneous groups of countries were defined by cluster analysis. In the global approach, the linear model is better than SMEED's non-linear model in explaining the number of fatalities. Among the different groups of countries, the linear approach was found to be better suited for industrialized countries and the non-linear approach better for the developing countries. T도 comparison of traffic fatality data for the Federal Republic the developing countries. The comparison of traffic fatality data for the Federal Republic of Germany and the Republic of Korea showed different regression equations during the same time period. 2) The BOX/JENKINS time series analysis on a monthly basis points out clearly similar seasonal patterns for the two countries over the years studied. The decrease in traffic accidents following the intensification of the safety belt requirement was proved in the ARIMA model. It amounts to 7 to 8 percent fewer personal injury accidents and fatal accidents. The identified increase in safety in the Federal Republic of Germany since the 1970s is mainly due to the reduction of accident severity in residential areas. 3) Speeds and headways on motorways in th3e two countries were also compared. The measurements point out that German road users drive faster, take more risks, and accept shorter time gaps than Korean road users. However, the accident statistics show accident rates for Korea that are several times higher than those in the Federal Republic of Germany.
In this paper, the charging characteristics of series resonant type high voltage capacitor chargers considering the transformer stray capacitance have been studied. The principles of operation for the four operational modes and the mode changes for the four different switching frequency sections are explained and analyzed in the range of switching frequency below the resonant frequency. It is confirmed that the average charging currents derived from the above analysis results have non-linear characteristics in each of the four modes. The resonant current, resonant voltage, charging current, and charging time of this capacitor charger as variations of the switching frequency, series parallel capacitance ratio ($k=C_p/C_s$), and output voltage are calculated. From the calculation results, the advantages and disadvantages arising from the parallel connection of this stray capacitance are described. Some methods to minimize charging time of this capacitor charger are suggested. In addition, the results of a comparative test using two transformers whose stray capacitances are different are described. A 1.8 kJ/s prototype capacitor charger is assembled with a TI28335 DSP controller and a 40 kJ, 7 kV capacitor. The analysis results are verified by the experiment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.