• Title/Summary/Keyword: non-linear static and dynamic analysis

Search Result 76, Processing Time 0.032 seconds

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

Free vibration analysis of non-prismatic beams under variable axial forces

  • Saffari, H.;Mohammadnejad, M.;Bagheripour, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.561-582
    • /
    • 2012
  • Despite popularity of FEM in analysis of static and dynamic structural problems and the routine applicability of FE softwares, analytical methods based on simple mathematical relations is still largely sought by many researchers and practicing engineers around the world. Development of such analytical methods for analysis of free vibration of non-prismatic beams is also of primary concern. In this paper a new and simple method is proposed for determination of vibration frequencies of non-prismatic beams under variable axial forces. The governing differential equation is first obtained and, according to a harmonic vibration, is converted into a single variable equation in terms of location. Through repetitive integrations, integral equation for the weak form of governing equation is derived. The integration constants are determined using the boundary conditions applied to the problem. The mode shape functions are approximated by a power series. Substitution of the power series into the integral equation transforms it into a system of linear algebraic equations. Natural frequencies are determined using a non-trivial solution for system of equations. Presented method is formulated for beams having various end conditions and is extended for determination of the buckling load of non-prismatic beams. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained to those obtained using available finite element software.

Preliminary Study on Optimization of the Tube Hydroforming Process Using the Equivalent Static Loads (등가정하중을 이용한 튜브 하이드로포밍 공정 최적설계에 관한 기초연구)

  • Jang, Hwan-Hak;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.259-268
    • /
    • 2015
  • An optimization method for the tube hydroforming process is developed using the equivalent static loads method for non linear static response structural optimization (ESLSO). The aims of the tube hydroforming optimization are to determine the axial forces (axial feedings) and the internal pressures, and to obtain the desired shape without failures after hydroforming analysis. Therefore, the magnitude of the forces should be design variables in the optimization process. Also, some tube hydroforming optimization needs to consider the result of the thickness in nonlinear dynamic analysis as responses. However, the external forces are considered as constants and the thickness is not a response in the linear response optimization process of the original ESLSO. Thus, a new ESLSO process is proposed to overcome the difficulties and some examples are solved to validate the proposed method.

Dynamic responses of an FPSO moored on sloped seabed under the action of environmental loads

  • Roy, Shovan;Banik, Atul K.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.329-343
    • /
    • 2018
  • The inclination of seabed profile (sloped seabed) is one of the known topographic features which can be observed at different seabed level in the large offshore basin. A mooring system connected between the platform and global seabed is an integral part of the floating structure which tries to keep the floating platform settled in its own position against hostile sea environment. This paper deals with an investigation of the motion responses of an FPSO platform moored on the sloped seabed under the combined action of wave, wind and current loads. A three-dimensional panel discretization method has been used to model the floating body. To introduce the connection of multi-segmented non-linear elastic catenary mooring cables with the sloped seabed, a quasi-static composite catenary model is employed. The model and analysis have been completed by using hydrodynamic diffraction code AQWA. Validation of the numerical model has been successfully carried out with an experimental work published in the latest literature. The analysis procedure in this study has been followed time domain analysis. The study involves an objective oriented investigation on platform motions, in order to identify the effects of the slopped seabed, the action of the wave, wind and current loads and the presence of riser system. In the end, an effective analysis has been performed to identify a stable mooring model in demand of reducing structural responses of the FPSO.

Development of static and dynamic stability utilizing superior SUPER concrete 100MPa pontoon (정적 및 동적안전성이 우수한 SUPER concrete 100MPa 활용 부잔교 개발)

  • Lim, Hyoung Joo;Yun, Sik Jae;Lee, Sang Hee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.135-136
    • /
    • 2016
  • SUPER concrete poontoon is developed to overcome shortcomings about corrosion problem of steel pontoon and the insufficient freeboard line of concrete pontoon. Top slab of Pontoon resists truck load or sidewalk live load. The soffit slab and outer wall of Pontoon resist the horizontal and vertical components of wave pressure, and those were loaded along X and Y-axis of Pontoon. Global analysis for the Pontoon is carried out to design its cross-sections economically using a geometric non-linear time history analysis method by Strand7 and buoyance-stability calculated automatically on non-vertical boundary conditions. And the load-capacity of Pontoon is confirmed through mock-up tests.

  • PDF

Evaluation of seismic performance factors for tension-only braced frames

  • Shariati, Mahdi;Lagzian, Majid;Maleki, Shervin;Shariati, Ali;Trung, Nguyen Thoi
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.599-609
    • /
    • 2020
  • The tension-only braced frames (TOBFs) are widely used as a lateral force resisting system (LFRS) in low-rise steel buildings due to their simplicity and economic advantage. However, the system has poor seismic energy dissipation capacity and pinched hysteresis behavior caused by early buckling of slender bracing members. The main concern in utilizing the TOBF system is the determination of appropriate performance factors for seismic design. A formalized approach to quantify the seismic performance factor (SPF) based on determining an acceptable margin of safety against collapse is introduced by FEMA P695. The methodology is applied in this paper to assess the SPFs of the TOBF systems. For this purpose, a trial value of the R factor was first employed to design and model a set of TOBF archetype structures. Afterwards, the level of safety against collapse provided by the assumed R factor was investigated by using the non-linear analysis procedure of FEMA P695 comprising incremental dynamic analysis (IDA) under a set of prescribed ground motions. It was found that the R factor of 3.0 is appropriate for safe design of TOBFs. Also, the system overstrength factor (Ω0) was estimated as 2.0 by performing non-linear static analyses.

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

Non-conventional formulations for the finite element method

  • de Freitas, J.A. Teixeira;de Almeida, J.P. Moitinho;Peraira, E.M.B. Ribeiro
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.655-678
    • /
    • 1996
  • The paper reports on alternative hybrid/mixed formulations being developed by the Structural Analysis Research Group of Institute Superior T$\acute{e}$cnico. These formulations open the scope and increase the power of the finite element method by allowing different fields to be independently approximated, within certain consistency criteria, and by enhancing the use of a wide range of approximation functions. They have been applied to the analysis of 2-D problems, laminar structures and solids, using different constitutive relations, both in quasi-static and dynamic regimes. The fundamental properties of the formulations are identified and assessed and their performance is illustrated using simple, linear applications.

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank (공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구)

  • Lee, Sook;Son, Taek-joon;Choi, Sang-Min;Bae, Jin-Hyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.10-21
    • /
    • 2022
  • The propellant tank, which is a space launch vehicle structure, must have structural integrity as various static and dynamic loads are applied during ground transportation, launch standby, take-off and flight processes. Because of these characteristics, the propellant tank cylinder, the structural object of this study, has a thin thickness, so buckling due to compressive load is considered important in the cylinder design. However, the existing buckling design standards such as NASA and Europe are fairly conservative and do not reflect the latest design and manufacturing technologies. In this study, nonlinear buckling analysis is performed using various analysis models that reflect initial defects, and a method for establishing new buckling design standards for cylinder structures is presented. In conclusion, it was confirmed that an effective lightweight design of the cylinder structure for common bulkhead propulsion tank could be realized.