• Title/Summary/Keyword: non-linear pipeline

Search Result 17, Processing Time 0.027 seconds

A Study on Failure Frequency Model for Risk Analysis of Natural Gas Pipeline with Comparison of Overseas Failure Data (국외 천연가스 배관 사고 빈도 비교 및 분석 모형에 관한 연구)

  • Oh, Shin-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.60-66
    • /
    • 2014
  • In this study, the overseas failure frequency data of the high-pressure gas pipeline were investigated to apply QRA of high-pressure gas pipeline. The typical overseas failure frequency data of high-pressure gas pipeline are DOT of United States, EGIG of Europe, and UKOPA of United Kingdom (UK). Comparative analysis of these data was shown that EGIG data was suitable for the situation in Korea. In order to apply QRA of high-pressure gas pipeline, non-linear regression analysis using the failure frequency data in the report of EGIG 8th was performed. In the future, intensive researches are required for the external interference because about 50% of the failure frequency of all incidents is the external interference, and for combining of domestic and overseas data.

Research on the Analysis Method of Thermal Buckling of Subsea Pipeline Structures (해저 파이프라인 열좌굴 해석방법에 관한 연구)

  • Yang, Seung-Ho;Jung, Jong-Jin;Lee, Woo-Sub;Do, Chang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.225-232
    • /
    • 2010
  • The requirement of design of High-Pressure/High-Temperature(HP/HT) pipelines on an seabed increases in recent years. The need of research on the analysis method to improve the design capacity is increasing. The purpose of this study is the development of the analysis method of thermal buckling of subsea pipeline structures. The analysis method of thermal buckling was established by using the commercial FEM code(ABAQUS) which shows the outstanding performance in non-linear static FE analysis. The developed method has been applied to the installation of subsea pipeline on the offshore project. For a validation, the comparative study has been carried out. This application to offshore project demonstrates the superiority of the analysis method of thermal buckling of subsea pipeline structures and testifies the application to detail design.

Analysis of offshore pipeline laid on 3D seabed configuration by Abaqus

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid;Sagharichiha, Mohammad
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • Three dimensional (3D) non-linear finite element analysis of offshore pipeline is investigated in this work with the help of general purpose software Abaqus. The general algorithm for the finite element approach is introduced. The 3D seabed mesh, limited to a corridor along the pipeline, is extracted from survey data via Fledermous software. Moreover soil bearing capacity and coefficient of frictions, obtained from the field survey report, and are introduced into the finite element model through the interaction module. For a case of study, a 32inch pipeline with API 5L X65 material grade subjected to high pressure and high temperature loading is investigated in more details.

Investigating the Subsea Sandwich Pipeline Integrity under Complex Loadings (선형 매칭 기법을 활용한 해저 샌드위치 파이프의 복합하중 영향도 분석)

  • Geo-Rak Park;Kyu Song;Youngjae Choi;Nak-Kyun Cho;Chung-Soo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • Subsea pipelines are widely used to transport hydrocarbons from ultra-deep seawater to facilities on the coast. A sandwich pipe is a pipe-in-pipe system in which the annulus between the two concentric steel pipes is filled with polymer cores and fillers for insulation and structural reinforcement. Sandwich pipeline is always exposed to complex loading such as bending moment, bulking, internal and external pressures caused by installation, operation and environmental factors. This research provides insights into the structural integrity of sandwich pipeline exposed to complex loading conditions using a linear matching method (LMM). The finite element model of the sandwich pipeline has been generated from previous research, and the model validation is performed by comparing the results of the linear analysis between the two models. The temperature dependent material properties are used to simulate the behavior of real pipeline, and the elastic-perfectly plastic (EPP) model has been taken into account for the material non-linearity. Numerical results provide comprehensive insights into the structural response of the sandwich pipeline under monotonic and cyclic loading and provide notable points about the evaluation of the plastic collapse limit and the elastic shakedown limit of the sandwich pipeline.

Integrated Water Distribution Network System using the Mathematical Analysis Model and GIS (수리해석 모형과 GIS를 이용한 통합 용수배분 시스템)

  • Kwon, Jae-Seop;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.21-28
    • /
    • 2001
  • In this study, GNLP(GIS linked non-linear network analysis program) for pipeline system analysis has been developed. This GNLP gets the input data for pipeline analysis from existing GIS(geographic information system) data automatically, and has GUI(graphic user interface) for user. Non-Linear Method was used for hydraulic analysis of pipe network based on Hazen-Williams equation, and Microsoft Access of relational database management system(RDBMS) was used for the framework of database applied program. GNLP system environment program was improved so that a pipe network designer can input information data for hydraulic analysis of pipeline system more easily than that of existing models. Furthermore this model generate output such as pressure and water quantities in the form of a table and a chart, and also produces output data in Excel file. This model is also able to display data effectively for analysed data confirmation and query function which is the core of GIS program.

  • PDF

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

Numerical and Experimental studies on pipeline laying for Deep Ocean Water (해양심층수 취수관 부설을 위한 수치해석적 및 실험적 연구)

  • JUNG DONG-HO;KIM HYOUN-JOO;KIM JIN-HA;PARK HAN-IL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.29-34
    • /
    • 2004
  • Numerical and experimental studies on pipeline laying for intake Deep Ocean Water are carried out. In the numerical study, an implicit finite difference algorithm is employed for three-dimensional pipe equations. Fluid non-linearity and bending stiffness are considered and solved by Newton-Raphson iteration. Seabed is modeled as elastic foundation with linear spring and damper. Top tension and general configuration of pipeline at a depth are predicted. It is found that control for tension to prevent being large curvature of pipeline is needed on th steep seabed and, it should be considered 23.5 ton of tension at a top of pipe on the process of pipeline laying at 400m of water depth The largest top tension of pipe on condition of the beam sea during pipe laying is shown from the experiment. The results of this study can be contributed to the design of pipeline laying for upwelling deep ocean water.

  • PDF

Self-Burial Structure of the Pipeline with a Spoiler on Seabed (해저지반에 설치된 스포일러 부착형 파이프라인의 자가매설 기능분석)

  • Lee, Woo-Dong;Hur, Dong-Soo;Kim, Han-Sol;Jo, Hyo-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.310-319
    • /
    • 2016
  • If a spoiler was attached to the pipeline investigated in a previous study, a strong flow and vortex at the lower part caused scouring and thus an asymmetric pressure distribution, which assisted in the analysis of the self-burial structure where a down force was applied to the pipe. However, only the fluid-pipe interaction was considered, excluding the medium (seabed), when practically burying the pipeline. Thus, this study applied a numerical model (LES-WASS-2D) to directly analyze the non-linear interactions among the fluid, pipe, and seabed in order to perform numerical simulations of a pipeline with a spoiler installed on the seabed. This allowed the self-burial mechanism of a pipeline with a spoiler to be analyzed in the same context as the previous study that considered only the fluid-pipe interaction. However, when a pipeline was installed on the seabed, a strong flow and vortex were found at the front of the bottom, and a spoiler accelerated the fluid resistances. This hydraulic phenomenon will reinforce the scouring and down force on the pipeline. In the general consideration of the numerical analysis results by the specifications and arrangements of the spoiler, a pipeline with a spoiler was found to be the most effective for the self-burial function.

SHA-1 Pipeline Configuration According to the Maximum Critical Path Delay (최대 임계 지연 크기에 따른 SHA-1 파이프라인 구성)

  • Lee, Je-Hoon;Choi, Gyu-Man
    • Convergence Security Journal
    • /
    • v.16 no.7
    • /
    • pp.113-120
    • /
    • 2016
  • This paper presents a new high-speed SHA-1 pipeline architecture having a computation delay close to the maximum critical path delay of the original SHA-1. The typical SHA-1 pipelines are based on either a hash operation or unfolded hash operations. Their throughputs are greatly enhanced by the parallel processing in the pipeline, but the maximum critical path delay will be increased in comparison with the unfolding of all hash operations in each round. The pipeline stage logics in the proposed SHA-1 has the latency is similar with the result of dividing the maximum threshold delay of a round by the number of iterations. Experimental results show that the proposed SHA-1 pipeline structure is 0.99 and 1.62 at the operating speed ratio according to circuit size, which is superior to the conventional structure. The proposed pipeline architecture is expected to be applicable to various cryptographic and signal processing circuits with iterative operations.

Analysis of PIG Dynamics through Curved Section in Natural Gas Pipeline (천연가스 배관 곡관부에서의 피그 동적 거동 해석)

  • Kim D. K.;Nguyen T. T.;Yoo H. R.;Rho Y. W.;Kho Y.T.;Kim S. B.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.1-9
    • /
    • 2002
  • This paper presents simple models for flow and the PIG dynamics when it passes through a $90^{\circ}$ curved section of pipeline. The simulation has been done with two different operational boundary conditions. The solution fur non-linear hyperbolic partial equations for flow is given by using MOC. The Runge-Kuta method is used to solve the initial condition equation fur flow and the PIG dynamics equation. The simulation results show that the proposed model and solution can be used fur estimating the PIG dynamics when the pig runs in the pipeline including curved section. In this paper, dynamic modeling and its analysis for the PIG flow through $90^{\circ}$ curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is derived by using Lagrange equation under assumption that it passes through 3 different sections in the curved pipeline such that it moves into, inside and out of the curved section. The downstream and up stream flow dynamics including the curved sections are solved using MOC. The effectiveness of the derived mathematical models is estimated by simulation results fur a low pressure natural gas pipeline including downward and upward curved sections. The simulation results show that the proposed model and solution can be used for estimating the PIG dynamics when we pig the pipeline including curved section.

  • PDF