SHA-1 Pipeline Configuration According to the Maximum Critical Path Delay

최대 임계 지연 크기에 따른 SHA-1 파이프라인 구성

  • Lee, Je-Hoon (Div. of Electronics, Information and Communication Eng., Kangwon National University) ;
  • Choi, Gyu-Man (Dept. of Electrical Engineering, Catholic GwanDong University)
  • 이제훈 (강원대학교 공학대학 전자정보통신공학부) ;
  • 최규만 (가톨릭관동대학교 공과대학 전자공학과)
  • Received : 2016.10.28
  • Accepted : 2016.12.17
  • Published : 2016.12.31

Abstract

This paper presents a new high-speed SHA-1 pipeline architecture having a computation delay close to the maximum critical path delay of the original SHA-1. The typical SHA-1 pipelines are based on either a hash operation or unfolded hash operations. Their throughputs are greatly enhanced by the parallel processing in the pipeline, but the maximum critical path delay will be increased in comparison with the unfolding of all hash operations in each round. The pipeline stage logics in the proposed SHA-1 has the latency is similar with the result of dividing the maximum threshold delay of a round by the number of iterations. Experimental results show that the proposed SHA-1 pipeline structure is 0.99 and 1.62 at the operating speed ratio according to circuit size, which is superior to the conventional structure. The proposed pipeline architecture is expected to be applicable to various cryptographic and signal processing circuits with iterative operations.

본 논문은 SHA-1 암호 알고리즘의 최대 임계 지연과 유사한 연산 지연을 갖는 새로운 고속 SHA-1 파이프라인 구조를 제안한다. 기존 SHA-1 파이프라인 구조들은 하나의 단계연산 혹은 언폴딩된 단계연산에 기반한 파이프라인 구조를 갖는다. 파이프라인 실행에 따른 병렬 처리로 성능은 크게 향상되나, 라운드의 모든 단계연산을 언폴딩하였을 때와 비교하여 최대 임계 지연의 크기가 증가한다. 제안한 파이프라인 스테이지 회로는 라운드의 최대 임계 지연을 반복 연산 수로 나눈 만큼의 지연 시간을 갖도록 구성함으로써, 불필요한 레이턴시 증가를 방지하였다. 실험 결과, 회로크기에 따른 동작속도 비율에서 제안된 SHA-1 파이프라인 구조는 0.99 및 1.62로 기존 구조에 비해 우월함을 증명하였다. 제안된 파이프라인 구조는 반복 연산을 갖는 다양한 암호 및 신호 처리 회로에 적용 가능할 것으로 기대된다.

Keywords

References

  1. L. Jiang, Y. Wang, Q. Zhao, Y. Shao and X. Zhao, "Ultra high throughput architectures for SHA-1 Hash algorithm on FPGA," Proc. of CiSE 2009, pp. 1-4, 2009.
  2. N. Sklavos, E. Alexopoulos and O. Koufopavlou, "Networking data integrity: High speed architecture and hardware implementation," The Int'l Arab J. of Information Technology, vol. 1, no, 6, pp. 54-59, July 2003.
  3. N. Sklavos, E. Alexopoulos and O. Koufopavlou, "An ultra high speed architecture for VLSI implementation of Hash functions," Proc. of ICECS 2003, pp. 990-993, 2003.
  4. H. Michail, A. Kakarountas, O. Koufopavlou and C. Goutis, "A low-power and high-throughput implementation of the SHA-1 Hash function," Proc. of ISCAS 2005, pp. 23-26, 2005.
  5. Y. Lee, H. Chan and I. Verbauwhede, "Throughput optimized SHA-1 architecture using unfolding transformation, Proc. of ASAP 2006, pp. 354-359, 2006.
  6. S. Suhaili and T. Watanabe, "High throughput evaluation of SHA-1 implementation using unfolding transformation," ARPN J. of Engineering and Applied Sciences, vol. 11, no. 5, pp. 3350-3355, March 2016.
  7. H. Michail, G. Arthanasiou, G. Theodoridis, A. Gregoriades and C. Goutis, "Design and Implementation of totally-self checking SHA-1 and SHA-256 hash functions's architecture," Microprocessors and Microsystems, vol. 45, part B, pp. 227-240, Sep. 2016. https://doi.org/10.1016/j.micpro.2016.05.011
  8. E. Lee, J. Lee, I. Park and K. Cho, "Implementation of high-speed SHA-1 architecture," IEICE ELEX, vol. 6, pp. 1174-1179, Aug. 2009. https://doi.org/10.1587/elex.6.1174