• Title/Summary/Keyword: non-linear material behavior

Search Result 186, Processing Time 0.024 seconds

Non-linear analysis of dealamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.97-111
    • /
    • 2017
  • The present paper reports an analytical study of delamination fracture in the Mixed Mode Flexure (MMF) functionally graded beam with considering the material non-linearity. The mechanical behavior of MMF beam is modeled by using a non-linear stress-strain relation. It is assumed that the material is functionally graded along the beam height. Fracture behavior is analyzed by the J-integral approach. Non-linear analytical solution is derived of the J-integral for a delamination located arbitrary along the beam height. The J-integral solution derived is verified by analyzing the strain energy release rate with considering the non-linear material behavior. The effects of material gradient, crack location along the beam height and material non-linearity on the fracture are evaluated. It is found that the J-integral value decreases with increasing the upper crack arm thickness. Concerning the influence of material gradient on the non-linear fracture, the analysis reveals that the J-integral value decreases with increasing the ratio of modulus of elasticity in the lower and upper edge of the beam. It is found also that non-linear material behavior leads to increase of the J-integral value. The present study contributes for the understanding of fracture in functionally graded beams that exhibit material non-linearity.

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.

Non-linear study of mode II delamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.263-271
    • /
    • 2017
  • A theoretical study was carried-out of mode II delamination fracture behavior of the End Loaded Split (ELS) functionally graded beam configuration with considering the material non-linearity. The mechanical response of ELS was modeled analytically by using a power-law stress-strain relation. It was assumed that the material is functionally graded transversally to the beam. The non-linear fracture was investigated by using the J-integral approach. Equations were derived for the crack arm curvature and zero axes coordinate that are needed for the J-integral solution. The analysis developed is valid for a delamination crack located arbitrary along the beam height. The J-integral solution was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, non-linear material behavior and crack location on the fracture were evaluated. The solution derived is suitable for parametric analyses of non-linear fracture. The results obtained can be used for optimization of functionally graded beams with respect to their mode II fracture performance. Also, such simplified analytical models contribute for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.

Non-linear longitudinal fracture in a functionally graded beam

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.441-453
    • /
    • 2018
  • Longitudinal fracture in a functionally graded beam configuration was studied analytically with taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks located symmetrically with respect to the centroid was analyzed. The material was functionally graded along the beam width as well as along the beam length. The fracture was studied in terms of the strain energy release rate. The influence of material gradient, crack location along the beam width, crack length and material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found that by using appropriate material gradients in width and length directions of the beam, the strain energy release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for optimization of functionally graded beam structure with respect to the longitudinal fracture performance.

Finite element analysis of the PZT 3203HD bimorph beam actuator based on material non-linear characteristics (박막형 압전재료 3203HD의 재료 비선형성을 고려한 바이모프 보 작동기의 비선형 유한 요소해석)

  • Jang, Sung-Hoon;Kim, Young-Sung;Lee, Sang-Ki;Park, Hoon-Cheol;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.18-23
    • /
    • 2004
  • In this paper, material non-linear behavior of PZT wafer(3203HD, CTS) under high electric field and stress is experimentally investigated and the non-linearity of the PZT wafer is numerically simulated. Empirical functions that can represent the non-linear behavior of the PZT wafer have been extracted based on the measured piezo-strain under stress. The functions are implemented in an incremental finite element formulation for material non-linear analysis. New definition of the piezoelectric constant and the incremental strain are incorporated into the finite element formulation for a better reproduction of the non-linear behavior. With the new definition of the in incremental piero-strain the measured non-linear behavior of the PZT wafer has been accurately reproduced even for high electric field. For validation of the measured non-linear characteristics and the proposed approach, a PZT bimorph beam actuator has been numerically and experimentally tested. The predicted actuation displacement, based on the material nonlinear finite element analysis, showed a good agreement with the measured one.

Fracture analysis of functionally graded beams with considering material non-linearity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.487-494
    • /
    • 2017
  • The present paper deals with a theoretical study of delamination fracture in the Crack Lap Shear (CLS) functionally graded beam configuration. The basic purpose is to analyze the fracture with taking into account the material non-linearity. The mechanical behavior of CLS was described by using a non-linear stress-strain relation. It was assumed that the material is functionally graded along the beam height. The fracture was analyzed by applying the J-integral approach. The curvature and neutral axis coordinate of CLS beam were derived in order to solve analytically the J-integral. The non-linear solution of J-integral obtained was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, crack location along the beam height and material non-linearity on fracture behavior were evaluated. The J-integral non-linear solution derived is very suitable for parametric studies of longitudinal fracture in the CLS beam. The results obtained can be used to optimize the functionally graded beam structure with respect to the fracture performance. The analytical approach developed in the present paper contributes for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.

A Study on Non-Linear Matrial and Geomertric Anolysis of Space Truss (기하학적 비선형과 재료적 비선형을 고려한 입체트러스 해석에 관한 연구)

  • 이재문;권영환;김화중
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.1-5
    • /
    • 1990
  • The object of this study introducts simple formula being based on energy principle to investigate span truss's non-linear, and considers the relation of member's length, height rate and slenderness ratio to rise prymid truss's economic structure ability through each example. This paper considered space truss's geometric non-linear behavior and material non-linear behavior, so acquired under result through as saying energy principle.

  • PDF

Non-Linear Behavior Analysis for Stratospheric Airship Envelope (성층권 비행선 기낭 막재료에 대한 비선형 거동 연구)

  • Suh Young Wook;Woo Kyeongsik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, geometrically non-linear finite element analyses were performed to study the mechanical behavior of the material system of the envelope of stratospheric airships. The microstructure of the load­bearing plain weave layer was identified and modeled. The Updated Lagrangian formulation was employed to consider the geometric non-linearity as well as the induced structural non-linearity for the fiber tows. The stress-strain behavior was predicted and the effective elastic modulus was calculated by numerical experiments. It was found the non-linear stress-strain curves were largely different from those by linear analysis with much higher non-linear elastic moduli. The difference was more distinguishable when the tow waviness was smaller.

  • PDF

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.