• Title/Summary/Keyword: non-linear dynamic

Search Result 691, Processing Time 0.025 seconds

Torque Sensorless Decentralized Position/Force Control for Constrained Reconfigurable Manipulator via Non-fragile H Dynamic Output Feedback

  • Zhou, Fan;Dong, Bo;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.418-429
    • /
    • 2018
  • This paper studies the decentralized position/force control problem for constrained reconfigurable manipulator without torque sensing. A novel joint torque estimation scheme that exploits the existing structural elasticity of the manipulator joint with harmonic drive model is applied for each joint module. Based on the estimated joint torque and dynamic output feedback technique, a decentralized position/force control strategy is presented. In order to solve the problem of controller parameter perturbation, the non-fragile robust technique is introduced into the dynamic output feedback controller. Subsequently, the stability of the closed-loop system is proved using the Lyapunov theory and linear matrix inequality (LMI) technique. Finally, two 2-DOF constrained reconfigurable manipulators with different configurations are applied to verify the effectiveness of the proposed control scheme in numerical simulation.

Bi-spectrum for identifying crack and misalignment in shaft of a rotating machine

  • Sinha, Jyoti K.
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.47-60
    • /
    • 2006
  • Bi-spectrum is a tool in the signal processing for identification of non-linear dynamic behvaiour in systems, and well-known for stationary system where components are non-linearly interacting. Breathing of a crack during shaft rotation is also exhibits a non-linear behaviour. The crack is known to generate 2X (twice the machine RPM) and higher harmonics in addition to 1X component in the shaft response during its rotation. Misaligned shaft also shows similar such feature as a crack in a shaft. The bi-spectrum method has now been applied on a small rotating rig to observe its features. The bi-spectrum results are found to be encouraging to distinguish these faults based on few experiments conducted on a small rig. The results are presented here.

Static Non-linear Finite Element Analysis of Spatial Cable Networks (3차원 케이블망의 초기평형상태 결정 및 정적 비선형 유한요소해석)

  • 김문영;김남일;안상섭
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.179-190
    • /
    • 1998
  • A geometrically nonlinear finite element formulation of spatial cable networks is presented using two cable elements. Firstly, derivation procedures of tangent stiffness and mass matrices for the space truss element and the elastic catenary cable element are summarized. The load incremental method based on Newton-Raphson iteration method and the dynamic relaxation method are presented in order to determine the initial static state of cable nets subjected to self-weights and support motions. Furthermore, static non-linear analysis of cable structures under additional live loads are performed based on the initial configuration. Challenging example problems are presented and discussed in order to demonstrate the feasibility of the present finite element method and investigate static nonlinear behaviors of cable nets.

  • PDF

Nonlinear Seismic Behavior Analysis of Skewed Bridges Considering Pounding Between Deck and Abutment (상판과 교대의 충돌을 고려한 사교의 비선형 지진거동 해석)

  • Kang, Seung Woo;Choi, Kwang Kyu;Song, Si Young;Son, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.301-310
    • /
    • 2016
  • There are differences in seismic behavior between non-skewed bridges and skewed bridges due to in-plane rotations caused by pounding between the skewed deck and its abutments during strong earthquake. Many advances have been made in developing design codes and guidelines for dynamic analyses of non-skewed bridges. However, there remain significant uncertainties with regard to the structural response of skewed bridges caused by unusual seismic response characteristics. The purpose of this study is performing non-linear time history analysis of the bridges using abutment-soil interaction model considering pounding between the skewed deck and its abutments, and analyzing global seismic behavior characteristics of the skewed bridges to assess the possibility of unseating. Refined bridge model with abutment back fill, shear key and elastomeric bearing was developed using non-linear spring element. In order to evaluate the amplification of longitudinal and transverse displacement response, non-linear time history analysis was performed for single span bridges. Far-fault and near-fault ground motions were used as input ground motions. According to each parameter, seismic behavior of skewed bridges was evaluated.

Nonlinear vibration analysis of viscoelastic laminated plates undergoing large deflection (점탄성 거동을 하는 복합재료 판의 대변위 진동해석)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.546-552
    • /
    • 2000
  • Dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated taking into account the viscoelastic behavior of material properties. Based on von Karman's non-linear deformation theory and Boltzmann's superposition principle, non-linear and hereditary type governing equations are derived. Finite element analysis and the method of multiple scales is applied to examine the effect of large amplitude on the dissipative nature of viscoelastic laminated plates.

  • PDF

A Dynamic Pricing Model with a Multiplicative Functional Form (승산적 형태를 가진 동태적 가격결정 모형)

  • Cha Kyoung-Cheon;Jun Duk-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.97-105
    • /
    • 2006
  • Brand Pricing is the most important issue for the brand manager in the dynamic market. in the typical dynamic pricing model, a linear function has been used based on the assumption that the non-Price Influences and the price influences were independent. However, to incorporate the characteristics of the dynamic market, it is natural to consider the multiplicative relationship. We are going to try the multiplicative linkage between the non-price Influences and the price influences and suggest a new dynamic pricing model with e multiplicative functional form. An empirical study of 19 brands in the Korean cigarette market shows the feasibility of the suggested model.

Thermal stresses in a non-homogeneous orthotropic infinite cylinder

  • Edfawy, E.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.841-852
    • /
    • 2016
  • The present paper is concerned with the investigation of propagation of thermoelastic media, the finite difference technique is used to obtain the solution for the uncoupled dynamic thermoelastic stress problem in a non-homogeneous orthrotropc thick cylindrical shell. In implementing the method, the linear dynamic thermoelasticity equations are used with the appropriate boundary and initial conditions. Thermal shock stress becomes of significant magnitude due to stress wave propagation which is initiated at the boundaries by sudden thermal loading. Numerical results have been given and illustrated graphically in each case considered. The presented results indicate that the effect of inhomogeneity is very pronounced.

An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls

  • Saman Yaghmaei-Sabegh;Shabnam Neekmanesh;Nelson Lam;Anita Amirsardari;Nasser Taghizadieh
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.655-664
    • /
    • 2023
  • Reinforced concrete (RC) shear wall structures are one of the most widely used structural systems to resist seismic loading all around the world. Although there have been several efforts to provide conceptually simple procedures to reasonably assess the seismic demands of structures over recent decades, it seems that lesser effort has been put on a number of structural forms such as RC shear wall structures. Therefore, this study aims to represent a simple linear response spectrum-based method which can acceptably predict the nonlinear displacements of a non-ductile RC shear wall structure subjected to an individual ground motion record. An effective period and an equivalent damping ratio are introduced as the dynamic characteristics of an equivalent linear SDOF system relevant to the main structure. By applying the fundamental mode participation factor of the original MDOF structure to the linear spectral response of the equivalent SDOF system, an acceptable estimation of the nonlinear displacement response is obtained. Subsequently, the accuracy of the proposed method is evaluated by comparison with another approximate method which is based on linear response spectrum. Results show that the proposed method has better estimations for maximum nonlinear responses and is more utilizable and applicable than the other one.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Parameter Estimation of Dynamic System Based on UKF (UKF 기반한 동역학 시스템 파라미터의 추정)

  • Seung, Ji-Hoon;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.772-778
    • /
    • 2012
  • In this paper, the states and the parameters in the dynamic system are simultaneously estimated by applying the UKF(Unscented Kalman Filter), which is widely used for estimating the state of non-linear systems. Estimating the parameter is very important in various fields, such as system control, modeling, analysis of performance, and prediction. Most of the dynamic systems which are dealt with in engineering have non-linearity as well as some noise. Therefore, the parameter estimation is difficult. This paper estimates the states and the parameters applying to the UKF, which is a non-linear filter and has strong noise. The augmented equation is used by including the addition of the parameter factors to the original state equation of the system. Moreover, it is simulated by applying to a 2-DOF(Degree of Freedom) dynamic system composed of the pendulum and the slide. The measurement noise of the dynamic equation is assumed to be a Gaussian distribution. As the simulation results show, the proposed parameter estimation performs better than the LSM(Least Square Method). Furthermore, the estimation errors and convergence time are within three percent and 0.1 second, respectively. Consequentially, the UKF is able to estimate the system states and the parameters for the system, despite having measurement data with noise.