• 제목/요약/키워드: non-linear dynamic

검색결과 691건 처리시간 0.145초

비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석 (Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory)

  • 박찬경;김석원;김회선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

적층고무받침이 설치된 단층 래티스 돔의 동적 거동 특성에 관한 연구 (A Study on the Characteristics of Dynamic Behavior of Single Layer Latticed Domes with Laminated Rubber Bearing)

  • 한상을;배상달
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.425-432
    • /
    • 2001
  • This paper presents the studies of the characteristics of dynamic behavior of single layer latticed domes with laminated rubber bearing and establishes the effectiveness of the system. The base isolation system installed between base and structures reduces the responses due to earthquake motions and increases the natural period of structures. Numerical analysis is carried out using modal superposition method and Newmark-βmethod which is linear acceleration method with (equation omitted) : 1/2 and β : 1/6. The time interval Δt for response calculation is 0.001 sec. Damping ratio is 2 % as Rayleigh damping and El Centro NS(1940) as earthquake motion is the input excitation data. The acceleration response of dome with base isolation is reduced to 30 % of the response of non-isolation system. From the results of the numerical studies on the models, it is confirmed that base isolation system effectively suppresses the responses of the domes subjected to horizontal earthquakes.

  • PDF

Structural behaviors of sustainable hybrid columns under compression and flexure

  • Wu, Xiang-Guo;Hu, Qiong;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.857-873
    • /
    • 2014
  • Structural behaviors of a sustainable hybrid column with the ultra high performance cementitious composites (UHPCC) permanent form under compression and flexure were studied. Critical state and failure stage characters are analyzed for large and small eccentricity cases. A simplified theoretical model is proposed for engineering designs and unified formulas for loading capacity of the hybrid column under compression and flexure loads are derived, including axial force and moment. Non-linear numerical analysis is carried out to verify the theoretical predictions. The theoretical predictions agree well with the numerical results which are verified by the short hybrid column tests recursively. Compared with the traditional reinforced concrete (RC) column, the loading capacity of the sustainable hybrid column is improved significantly due to UHPCC confinements.

틸팅차량 주행안전성을 위한 동특성 해석 알고리즘에 관한 연구 (A New Algorithm of Dynamic Characteristic Analysis for Running Safety of Tilting Vehicle)

  • 정종덕;천홍정;김선철;한석윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.131-139
    • /
    • 2005
  • It is very difficult to analyze the dynamic characteristic because tilting vehicle is a very complex system which are connected various mass element with tilting system. To realize and analyze actual phenomenon has restriction that usual commercial software calculates creep force under creep theory about wheel -rail contact mechanism as basic analyzing, and approach about contact point are based on two dimensional non-linear contact theory and simplified Hertzian contact which considers just displacement change on the YZ plain. Therefore, to solve these problems there should be a new approach difference with existing one. In this research, a new algorithm for finding wheel-rail contact position, calculation method of contact force and applied force will be presented.

  • PDF

Energy dissipation demand of compression members in concentrically braced frames

  • Lee, Kangmin;Bruneau, Michel
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.345-358
    • /
    • 2005
  • The response of single story buildings and other case studies are investigated to observe trends in response and to develop a better understanding of the impact of some design parameters on the seismic response of CBF. While it is recognized that many parameters have an influence on the behavior of braced frames, the focus of this study is mostly on quantifying energy dissipation in compression and its effectiveness on seismic performance. Based on dynamic analyses of single story braced frame and case studies, it is found that a bracing member designed with bigger R and larger KL/r results in lower normalized cumulative energy, i.e., cumulative compressive energy normalized by the corresponding tensile energy (${\sum}E_C/E_T$), in both cases.

Damage prediction of RC containment shell under impact and blast loading

  • Pandey, A.K.
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.729-744
    • /
    • 2010
  • There is world wide concern for safety of nuclear power installations after the terrorist attack on World Trade Center in 2001 and several other civilian structures in the last decade. The nuclear containment structure in many countries is a double shell structure (outer shell a RCC and inner a prestressed concrete). The outer reinforced concrete shell protects the inner shell and is designed for external loading like impact and blast. A comparative study of non-linear response of reinforced concrete nuclear containment cylindrical shell subjected to impact of an aircraft (Phantom) and explosion of different amounts of blast charges have been presented here. A material model which takes into account the strain rate sensitivity in dynamic loading situations, plastic and visco-plastic behavior in three dimensional stress state and cracking in tension has been developed earlier and implemented into a finite element code which has been validated with published literature. The analysis has been made using the developed software. Significant conclusions have been drawn for dissimilarity in response (deflections, stresses, cracks etc.) of the shell for impact and blast loading.

Development of a Neuro Controller for a Negative Output Elementary Luo Converter

  • Kayalvizhi Ramanujam;Natarajan Sirukarumbur Pandurangan;Palanisamy Padmaloshani
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.140-145
    • /
    • 2007
  • The negative output elementary Luo converter is a newly developed DC-DC converter. Due to the time-varying and switching nature of the above converter, its dynamic behavior becomes highly non-linear. Conventional controllers are incapable of providing good dynamic performance for such a converter and, hence, a neural network is utilized as a controller in this work. The performance of the chosen Luo converter using PI versus neuro controls is compared under load and line disturbances using MATLAB and TMS320F2407 DSP. The results validate the superiority of the developed neuro controller.

부가질량을 갖는 구속 외팔송수관의 비선형 동특성 (Nonlinear Dynamic Charateristics of Constrained Cantilever Tube with Attached Mass)

  • 정구충;임재훈;최연선
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.561-568
    • /
    • 2004
  • The nonlinear dynamic characteristic of a straight tube conveying fluid with constraints and an attached mass on the tube is examined in this study An experimental apparatus with an elastomer tube conveying water which has an attached mass and constraints is made and comparisons are made between the theoretical results from the non-linear equation of motion of piping system and the experimental results. The comparisons show that the tube is destabilized as the magnitude of the attached mass increases, and stabilized as the position of the attached mass closes to the fixed end. In case of a small end-mass, the system shows complicated and different types of solutions. For a constant end-mass. the system undergoes a series of bifurcations after the first Hopf bifurcation, as the flow velocity increases. which causes chaotic motions of the tube eventually.

모드중첩법을 이용한 고속용 팬터그래프와 전차선의 동적 상호작용 시뮬레이션 (Dynamic Simulation for High-speed Pantograph and Overhead-line using a Vibration Mode Superposition Method)

  • 조용현;이기원;박현준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.494-497
    • /
    • 2004
  • A dynamic simulation for a high-speed pantograph-overheadline has been performed using mode superposition method to predict contact forces between pantograph and overheadline. We can deal with non-linear dampers of the pantograph and pre-sag of overhead-line for the simulation. But, we can not consider slackness of dropper in the overhead-line. According to the simulation results, the contact forces and displacements are reasonably predicted, compared with other foreign simulation results.

  • PDF

The Application of FBNWT in Wave Overtopping Analysis

  • ;;현범수
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 2008
  • A 2-D Fluent-based numerical wave tank(FBNWT) capable of simulating wave propagating and overtopping is presented. The FBNWT model is based on the Reynolds averaged Naiver-Stokes equations and VOF free surface tracking method. The piston wave maker system is realized by dynamic mesh technology(DMT) and user defined function(UDF). The non-iteration time advancement(NITA) PISO algorithm is employed for the velocity and pressure coupling. The FBNWT numerical solutions of linear wave propagation have been validated by analytical solutions. Several overtopping problems are simulated and the prediction results show good agreements with the experimental data, which demonstrates that the present model can be utilized in the corresponding analysis.