• Title/Summary/Keyword: non-linear concrete

Search Result 392, Processing Time 0.023 seconds

Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending

  • Abu-Shamah, Awni;Allouzi, Rabab
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.533-549
    • /
    • 2020
  • Recently, Concrete-filled double skin steel tubular (CFDST) columns have proven an exceptional structural resistance in terms of strength, stiffness, and ductility. However, the resistance of these column members can be severely affected by the type of loading in which bending stresses increase in direct proportion with axial load and eccentricity value. This paper presents a non-linear finite element based modeling approach that studies the behavior of slender CFDST columns under biaxial loading. Finite element models were calibrated based on the outcomes of experimental work done by other researchers. Results from simulations of slender CFDST columns under axial loading eccentric in one direction showed good agreement with the experimental response. The calibrated models are expanded to a total of thirty models that studies the behavior of slender CFDST columns under combined compression and biaxial bending. The influences of parameters that are usually found in practice are taken into consideration in this paper, namely, eccentricity-to-diameter (e/D) ratios, slenderness ratios, diameter-to-thickness (D/t) ratios, and steel contribution ratios. Finally, an analytical study based on current code provisions is conducted. It is concluded that South African national standards (2011) provided the most accurate results contrasted with the Eurocode 4 (2004) and American Institute of Steel Construction (2016) that are found to be conservative. Accordingly, correction factors are proposed to the current design guidelines to provide more satisfactory results.

Low Cycle Fatigue Model for Longitudinal Reinforcement (축방향철근의 저주파 피로 모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.273-282
    • /
    • 2010
  • The purposes of this study are to verify the existing model and to propose a rational model for the fracture characteristic of reinforcing steel which is manufactured in Korea being subjected to cyclic loading. This investigation deals with modeling of the low-cycle fatigue behavior for longitudinal reinforcement steel of reinforced concrete bridge substructure (piles and columns of piers). The proposed low-cycle model of longitudinal steel is modeled based on 81 experimental data. The non-linear analysis program was developed using the proposed low-cycle model. The non-linear analysis are applied to the 6 circular bridge column test results and the accuracy of proposed model is discussed.

Numerical simulation of seismic tests on precast concrete structures with various arrangements of cladding panels

  • Lago, Bruno Dal
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.81-95
    • /
    • 2019
  • The unexpected seismic interaction of dry-assembled precast concrete frame structures typical of the European heritage with their precast cladding panels brought to extensive failures of the panels during recent earthquakes due to the inadequateness of their connection systems. Following this recognition, an experimental campaign of cyclic and pseudo-dynamic tests has been performed at ELSA laboratory of the Joint Research Centre of the European Commission on a full-scale prototype of precast structure with vertical and horizontal cladding panels within the framework of the Safecladding project. The panels were connected to the frame structure by means of innovative arrangements of fastening systems including isostatic, integrated and dissipative. Many of the investigated configurations involved a strong frame-cladding interaction, modifying the structural behaviour of the frame turning it into highly non-linear since small deformation. In such cases, properly modelling the connections becomes fundamental in the framework of a design by non-linear dynamic analysis. This paper presents the peculiarities of the numerical models of precast frame structures equipped with the various cladding connection systems which have been set to predict and simulate the experimental results from pseudo-dynamic tests. The comparison allows to validate the structural models and to derive recommendations for a proper modelling of the different types of existing and innovative cladding connection systems.

Estimating the compressive strength of HPFRC containing metallic fibers using statistical methods and ANNs

  • Perumal, Ramadoss;Prabakaran, V.
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.479-488
    • /
    • 2020
  • The experimental and numerical works were carried out on high performance fiber reinforced concrete (HPFRC) with w/cm ratios ranging from 0.25 to 0.40, fiber volume fraction (Vf)=0-1.5% and 10% silica fume replacement. Improvements in compressive and flexural strengths obtained for HPFRC are moderate and significant, respectively, Empirical equations developed for the compressive strength and flexural strength of HPFRC as a function of fiber volume fraction. A relation between flexural strength and compressive strength of HPFRC with R=0.78 was developed. Due to the complex mix proportions and non-linear relationship between the mix proportions and properties, models with reliable predictive capabilities are not developed and also research on HPFRC was empirical. In this paper due to the inadequacy of present method, a back propagation-neural network (BP-NN) was employed to estimate the 28-day compressive strength of HPFRC mixes. BP-NN model was built to implement the highly non-linear relationship between the mix proportions and their properties. This paper describes the data sets collected, training of ANNs and comparison of the experimental results obtained for various mixtures. On statistical analyses of collected data, a multiple linear regression (MLR) model with R2=0.78 was developed for the prediction of compressive strength of HPFRC mixes, and average absolute error (AAE) obtained is 6.5%. On validation of the data sets by NNs, the error range was within 2% of the actual values. ANN model has given the significant degree of accuracy and reliability compared to the MLR model. ANN approach can be effectively used to estimate the 28-day compressive strength of fibrous concrete mixes and is practical.

Behavior of Columns Due to Variation of Performance Influencing Factors Based on Performance Based Design (성능기반설계에 기초한 성능영향인자 변화에 따른 기둥의 거동분석)

  • Yun, Sung-Hwan;Choi, Min-Choul;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.489-498
    • /
    • 2010
  • The performance evaluation of reinforcement concrete structure is carried out as a function of the following performance influencing factors: (1) the strength of concrete, (2) longitudinal reinforcement, (3) transverse reinforcement, (4) aspect ratio, and (5) axial force. With various values of the five parameters, eigenvalue analysis and non-linear static analysis were performed to investigate the structural yield displacement, yield basis shear force, and static performance of ductility ratio. In addition, the performance evaluation is carried out according to the modified capacity spectrum method (FEMA-440) using the results of non-linear static analysis, and the effect of each parameter on performance point is analyzed. Based on the result of eigenvalue analysis and non-linear static analysis indicates, that the natural period and the ductility ratio are affected more by the structural properties than the material properties. In case of the analysis of the criterion of performance points, the effect of section shape is one of the important factors together with natural period and ductility ratio.

Some aspects of load-rate sensitivity in visco-elastic microplane material model

  • Kozar, Ivica;Ozbolt, Josko
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.317-329
    • /
    • 2010
  • The paper describes localization of deformation in a bar under tensile loading. The material of the bar is considered as non-linear viscous elastic and the bar consists of two symmetric halves. It is assumed that the model represents behavior of the quasi-brittle viscous material under uniaxial tension with different loading rates. Besides that, the bar could represent uniaxial stress-strain law on a single plane of a microplane material model. Non-linear material property is taken from the microplane material model and it is coupled with the viscous damper producing non-linear Maxwell material model. Mathematically, the problem is described with a system of two partial differential equations with a non-linear algebraic constraint. In order to obtain solution, the system of differential algebraic equations is transformed into a system of three partial differential equations. System is subjected to loadings of different rate and it is shown that localization occurs only for high loading rates. Mathematically, in such a case two solutions are possible: one without the localization (unstable) and one with the localization (stable one). Furthermore, mass is added to the bar and in that case the problem is described with a system of four differential equations. It is demonstrated that for high enough loading rates, it is the added mass that dominates the response, in contrast to the viscous and elastic material parameters that dominated in the case without mass. This is demonstrated by several numerical examples.

Performance Evaluation of Long-Life Asphalt Concrete Overlays Based on Field Survey Monitoring in National Highways (일반국도 현장조사 모니터링을 통한 장수명 아스팔트 덧씌우기 포장의 공용성 분석)

  • Baek, Jongeun;Lim, Jae Kyu;Kwon, Soo Ahn;Kwon, Byung Yoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.69-76
    • /
    • 2015
  • PURPOSES : Performance evaluation of four types of asphalt concrete overlays for deteriorated national highways. METHODS : Pavement distress surveys for crack rate and rut depth have been conducted annually using an automated pavement survey vehicle since 2007. Linear and non-linear performance prediction models of the asphalt concrete overlays were developed for 43 sections. The service life of the asphalt overlays was defined as the number of years after which a crack rate of 30% or rut depth of 15mm is observed. RESULTS : The service life of the asphalt overlays was estimated as 17.4 years on an average. In 90.7% of the sections, the service life of the overlays was 15 years or more which is 1.5 times the life of conventional asphalt concrete overlays used in national highways. The performance of the overlays was dependent on the type of asphalt mixture, traffic volume levels, and environmental conditions. CONCLUSIONS : The usage of stone mastic asphalt (SMA) and polymer-modified asphalt (PMA) for the overlays provided good resistance to cracking and rutting development. It is recommended that appropriate asphalt concrete overlays must be applied depending on the type of existing pavement distress.

Concrete compressive strength prediction using the imperialist competitive algorithm

  • Sadowski, Lukasz;Nikoo, Mehdi;Nikoo, Mohammad
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.355-363
    • /
    • 2018
  • In the following paper, a socio-political heuristic search approach, named the imperialist competitive algorithm (ICA) has been used to improve the efficiency of the multi-layer perceptron artificial neural network (ANN) for predicting the compressive strength of concrete. 173 concrete samples have been investigated. For this purpose the values of slump flow, the weight of aggregate and cement, the maximum size of aggregate and the water-cement ratio have been used as the inputs. The compressive strength of concrete has been used as the output in the hybrid ICA-ANN model. Results have been compared with the multiple-linear regression model (MLR), the genetic algorithm (GA) and particle swarm optimization (PSO). The results indicate the superiority and high accuracy of the hybrid ICA-ANN model in predicting the compressive strength of concrete when compared to the other methods.

Numerical Analysis for Contaminant Transport using a Dual Reactive Domain Model

  • 정대인;최종근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.122-126
    • /
    • 2002
  • Contaminant transport in porous media is characterized by solving an advection-dispersion equation(ADE). The ADE can cover equilibrium phenomena of interest, which include sorption, decay, and chemical reactions. Among these phenomena, sorption mechanism is described by several types of sorption isotherm. If we assume the sorption isotherm as linear, the solution of ADE can be easily procured. However, if we consider the sorption isotherm as non-linear isotherm like a Dual Reactive Domain Model (DRDM), the resulting differential equation becomes non-linear. In this case, the solution of ADE cannot be easily acquired by an analytic method. In this paper, we present the numerical analysis of ADE using a DRDM. The results reveal that even if sorption data may be fitted well using linear or non-linear isotherm, the characteristics of contaminant transport of the two cases are different from each other. To be concrete, the retardation of linear isotherm has stronger effect than that of the DRDM. As the non-linearity of sorption isotherm increases, the difference of retardation effects of the two cases becomes larger. For a pulse source, the maximum concentration of the linear model is higher than that of the DRDM, but the plume of the DRDM moves faster than that of the linear model. Behaviors of contaminant transport using the DRDM are consistent with common features of a linear model. For instance, biodegradation effect becomes larger as time goes by The faster the seepage velocity is, the faster the plume of contaminant moves. The plume of the contaminant is distributed evenly over overall domain in the event of high dispersion coefficient.

  • PDF

Non-linear Dynamic Analysis of Reinforced Concrete Slabs Subjected to Explosive Loading Using an Orthotropic Concrete Constitutive Model (이등방성 콘크리트 모델을 이용한 폭발하중을 받는 철근콘크리트 슬래브의 비선형 동적해석)

  • Lee, MinJoo;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.409-416
    • /
    • 2019
  • An improved numerical model for non-linear analysis of reinforced concrete (RC) slabs subjected to blast loading is proposed. This approach considers a strain rate dependent orthotropic constitutive model that directly determines the stress state using the stress-strain relation acquired from the data obtained using the biaxial strength envelope. Moreover, the bond-slip between concrete and reinforcing steel is gradually enlarged after the occurrence of cracks and is concentrated in the plastic hinge region. The bond-slip model is introduced to consider the crack direction of the concrete under a biaxial stress state. Correlation studies between the numerical analysis and the experimental results were performed to evaluate the analytical model. The results show that the proposed model can effectively be used in dynamic analyses of reinforced concrete slab members subjected to explosive loading. Moreover, it was determined that it is important to consider biaxial behavior in the material model and the bond-slip effect.