• 제목/요약/키워드: non-histone

검색결과 54건 처리시간 0.035초

Effect of Histone Deacetylase Inhibitors on Differentiation of Human Bone Marrow-derived Stem Cells Into Neuron-like Cells

  • Jang, Sujeong;Park, Seokho;Cho, Hyong-Ho;Yang, Ung;Kang, Maru;Park, Jong-Seong;Park, Sah-Hoon;Jeong, Han-Seong
    • 통합자연과학논문집
    • /
    • 제12권4호
    • /
    • pp.133-141
    • /
    • 2019
  • Mesenchymal stem cells (MSCs) are known to differentiate into multiple lineages, making neurogenic differentiation an important target in the clinical field. In the present study, we induced the neurogenic differentiation of cells using histone deacetylase (HDAC) inhibitors and studied their mechanisms for further differentiation in vitro. We treated cells with the HDAC inhibitors, MS-275 and NaB; and found that the cells had neuron-like features such as distinct bipolar or multipolar morphologies with branched processes. The mRNA expressions encoding for NEFL, MAP2, TUJ1, OLIG2, and SYT was significantly increased following HDAC inhibitors treatment compared to without HDAC inhibitors; high protein levels of MAP2 and Tuj1 were detected by immunofluorescence staining. We examined the mechanisms of differentiation and found that the Wnt signaling pathway and downstream mitogen-activate protein kinase were involved in neurogenic differentiation of MSCs. Importantly, Wnt4, Wnt5a/b, and Wnt11 protein levels were highly increased after treatment with NaB; signals were activated through the regulation of Dvl2 and Dvl3. Interestingly, NaB treatment increased the levels of JNK and upregulated JNK phosphorylation. After MS-275 treatment, Wnt protein levels were decreased and GSK-3β was phosphorylated. In this cell, HDAC inhibitors controlled the non-canonical Wnt expression by activating JNK phosphorylation and the canonical Wnt signaling by targeting GSK-3β.

Recombinant Protein Expression and Purification of the Human HMTase MMSET/NSD2

  • Morishita, Masayo;Mevius, Damiaan;Shen, Yunpeng;Di Luccio, Eric
    • Current Research on Agriculture and Life Sciences
    • /
    • 제31권3호
    • /
    • pp.157-164
    • /
    • 2013
  • Chromatin remodelers that include histone methyl transferases (HMTases) are becoming a focal point in cancer drug development. The NSD family of three HMTases, NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L are bona fide oncogenes found aberrantly expressed in several cancers, suggesting their potential role for novel therapeutic strategies. Several histone modifiers including HMTase have clear roles in human carcinogenesis but the extent of their functions and regulations are not well understood, especially in pathological conditions. The extents of the NSDs biological roles in normal and pathological conditions remain unclear. In particular, the substrate specificity of the NSDs remains unsettled and discrepant data has been reported. NSD2/MMSET is a focal point for therapeutic interventions against multiple myeloma and especially for t(4;14) myeloma, which is associated with a significantly worse prognosis than other biological subgroups. Multiple myeloma is the second most common hematological malignancy in the United States, after non-Hodgkin lymphoma. Herein, as a first step before entering a pipeline for protein x-ray crystallography, we cloned, recombinantly expressed and purified the catalytic SET domain of NSD2. Next, we demonstrated the catalytic activities, in vitro, of the recombinantly expressed NSD2-SET on H3K36 and H4K20, its biological targets at the chromatin.

  • PDF

Robinetin Alleviates Metabolic Failure in Liver through Suppression of p300-CD38 Axis

  • Ji-Hye Song;Hyo-Jin Kim;Jangho Lee;Seung-Pyo Hong;Min-Yu Chung;Yu-Geun Lee;Jae Ho Park;Hyo-Kyoung Choi;Jin-Taek Hwang
    • Biomolecules & Therapeutics
    • /
    • 제32권2호
    • /
    • pp.214-223
    • /
    • 2024
  • Metabolic abnormalities in the liver are closely associated with diverse metabolic diseases such as non-alcoholic fatty liver disease, type 2 diabetes, and obesity. The aim of this study was to evaluate the ameliorating effect of robinetin (RBN) on the significant pathogenic features of metabolic failure in the liver and to identify the underlying molecular mechanism. RBN significantly decreased triglyceride (TG) accumulation by downregulating lipogenesis-related transcription factors in AML-12 murine hepatocyte cell line. In addition, mice fed with Western diet (WD) containing 0.025% or 0.05% RBN showed reduced liver mass and lipid droplet size, as well as improved plasma insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) values. CD38 was identified as a target of RBN using the BioAssay database, and its expression was increased in OPA-treated AML-12 cells and liver tissues of WD-fed mice. Furthermore, RBN elicited these effects through its anti-histone acetyltransferase (HAT) activity. Computational simulation revealed that RBN can dock into the HAT domain pocket of p300, a histone acetyltransferase, which leads to the abrogation of its catalytic activity. Additionally, knock-down of p300 using siRNA reduced CD38 expression. The chromatin immunoprecipitation (ChIP) assay showed that p300 occupancy on the promoter region of CD38 was significantly decreased, and H3K9 acetylation levels were diminished in lipid-accumulated AML-12 cells treated with RBN. RBN improves the pathogenic features of metabolic failure by suppressing the p300-CD38 axis through its anti-HAT activity, which suggests that RBN can be used as a new phytoceutical candidate for preventing or improving this condition.

Epigenetics: A key paradigm in reproductive health

  • Bunkar, Neha;Pathak, Neelam;Lohiya, Nirmal Kumar;Mishra, Pradyumna Kumar
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제43권2호
    • /
    • pp.59-81
    • /
    • 2016
  • It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.

백서장기(白鼠臟器)에서의 Chromatin의 분리(分離)와 그 RNA 합성능(合成能)에 미치는 X-선전신조사(線全身照射)의 영향(影響)에 관(關)한 연구(硏究) (Studies on the Chromatin Isolated from the Organs of Animals Received Whole-body X-ray Irradiation)

  • 한수남
    • 대한핵의학회지
    • /
    • 제1권2호
    • /
    • pp.27-34
    • /
    • 1967
  • 근년(近年) 고등동물세포(高等動物細胞)에 있어서 유전자(遺傳子)의 본체(本體)인 DNA에서 RNA를 경과(經過)해서 특이적(特異的)인 단백질(蛋白質)의 생합성(生合成)에 도달(到達)하는 경로(經路)에 대(對)해서는 많은 연구(硏究)에 의해서 확립(確立)되어졌으나 그 조절기구(調節機構)에 대(對)해서는 불명(不明)한 점(點)이 많다. 개체(個體), 기관(器管), 세포내구조(細胞內構造) 급(及) DNA의 준위(準位)에서의 방사선(放射線)의 장해(障害)에 대(對)해서도 연구(硏究)되고 있으나 소위(所謂) 방사선감수성(放射線感受性) 급(及) 비감수성(非感受性)의 각장기(各臟器)에서 분리(分離)한 Chromatin (DNA-Histone-잔여단백(殘餘蛋白)의 고차구조결합체(高次構造結合體)에 대(對)한 DNA, RNA, 전단백질(全蛋白質)과 유전수식체(遺傳修飾體)라고 생각되는 Histon-단백(蛋白)의 화학조성(化學組成)을 검출(檢出)했으며 겸(兼)해서 chromatin의 생물활성(生物活性)인 RNA 합성능(合成能)(priming activity)에 대(對)한 방사선(放射線)의 영향(影響)을 조사(調査)하는데 의의(意義)가 있다. 전리방사선(電離放射線) 조사(照射)에 의해서 생체(生體)의 DNA의 합성조해(合成阻害)가 잘 알려진 사실(事實)이나 분화(分化)한 생체조직(生體組織)에서의 DNA의 합성(合成)보다도 일반대사(一般代謝)에 중요(重要)한 역할(役割)을 한다는 것도 생각된다. 세포(細胞)의 대사(代謝)는 내분비계등(內分泌系等)의 "Effector-DNA-RNA-단백합성(蛋白合成)이라는 정보유전기구(情報遺傳機構)에 의해서 제어(制禦)되어 있다. 이 연구(硏究)는 방사선생물학상(放射線生物學上) 중요(重要)한 것은 논할(論) 필요(必要)도 없으며 방사선동위원소표지화합물(放射線同位元素標識化合物)을 사용(使用)하여 생화학적(生化學的)으로 추구(推究)하였다.

  • PDF

PD-L1 Targeted Immunoliposomes with PD-L1 siRNA and HDAC Inhibitor for Anti-Lung Cancer Immunotherapy

  • Se-Yun Hong;Seong-Min Lee;Pyung-Hwan Kim;Keun-Sik Kim
    • 대한의생명과학회지
    • /
    • 제28권4호
    • /
    • pp.247-259
    • /
    • 2022
  • Immunotherapy, which uses an immune mechanism in the body, has received considerable attention for cancer treatment. Suberoylanilide hydroxamic acid (SAHA), also known as a histone deacetylase inhibitor (HDACi), is used as a cancer treatment to induce active immunity by increasing the expression of T cell-induced chemokines. However, this SAHA treatment has the disadvantage of causing PD-L1 overexpression in tumor cells. In this study, we prevented PD-L1 overexpression by blocking the PD-1/PD-L1 pathway using PD-L1 siRNA. We designed two types of liposomes, the neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC) for SAHA, and 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) for siRNA. To effectively target PD-L1 in cancer cells, we conjugated PD-L1 antibody with liposomes containing SAHA or PD-L1 siRNA. These immunoliposomes were also evaluated for cytotoxicity, gene silencing, and T-cell-induced chemokine expression in human non-small cell lung cancer A549 cells. It was confirmed that the combination of the two immunoliposomes increased the cancer cell suppression efficacy through Jurkat T cell induction more than twice compared to SAHA alone treatment. In conclusion, this combination of immunoliposomes containing a drug and nucleic acid has promising therapeutic potential for non-small-cell lung carcinoma (NSCLC).

Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines

  • Kotipalli, Aneesh;Banerjee, Ruma;Kasibhatla, Sunitha Manjari;Joshi, Rajendra
    • Genomics & Informatics
    • /
    • 제19권2호
    • /
    • pp.17.1-17.13
    • /
    • 2021
  • Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)-specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3'-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.

Glucosylceramide와 glucosylsphingosine에 의해 유도되는 신경세포 사멸에 대한 HDAC 저해제의 억제 효과 연구 (Inhibitory Action of a Histone Deacetylase 6 Inhibitor on Glucosylceramide- and Glucosylsphingosine-induced Neuronal Cell Apoptosis)

  • 정남희;남유화;박세영;김지연;정성철
    • 대한유전성대사질환학회지
    • /
    • 제20권1호
    • /
    • pp.1-13
    • /
    • 2020
  • Gaucher disease (GD)는 glucocerebrosidase 유전자(GBA)의 돌연변이에 의하여 발병하는 전세계적으로 가장 유병율이 높은 리소좀 축적질환이다. GD는 신경학적인 증상의 유무에 따라 3가지 임상형으로 구분된다. 신경병증 GD인 2형과 3형의 경우는 대뇌에서 glucosylceramide (GlcCer)와 glucosylsphingosine (GlcSph)의 농도가 증가하면서 신경세포의 심각한 손실이 야기되는 특징을 보인다. 신경교종에서 유래한 H4 세포를 GD에서 증가하는 기질인 GluCer와 GlcSph를 첨가하여 배양하였을 때, 심각한 DNA손상과 더불어 세포의 사멸이 야기되는 것과 이러한 신경세포의 사멸은 GluCer 보다는 GlcSph을 처리하였을 때 더 현저하게 증가하는 것을 관찰하였다. H4 세포에 히스톤 탈아세틸화 효소(HDAC) 6의 저해제인 tubacin과 GlcSph을 함께 처리하였을 경우에는 DNA손상은 물론 GlcSph에 의하여 유도된 세포사멸과 관련된 단백질 인자들의 발현이 모두 감소되었다. 본 연구를 통해 GlcSph이 세포사멸을 통하여 신경병증 GD의 발병에 주요한 역할을 한다는 것을 알 수 있었고, HDAC6 저해제가 신경병증 GD 환자를 위한 치료제 후보물질로 제시될 수 있는 가능성을 확인하였다.

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim;Ma, Sen;La, Shaokai;Guo, Zhiguo;Liu, Boshuai;Gao, Zimin;Farooq, Umar;Wang, Zhichang;Zhu, Xiaoyan;Cui, Yalei;Li, Defeng;Shi, Yinghua
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1461-1478
    • /
    • 2022
  • The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.

ENCODE: A Sourcebook of Epigenomes and Chromatin Language

  • Yavartanoo, Maryam;Choi, Jung Kyoon
    • Genomics & Informatics
    • /
    • 제11권1호
    • /
    • pp.2-6
    • /
    • 2013
  • Until recently, since the Human Genome Project, the general view has been that the majority of the human genome is composed of junk DNA and has little or no selective advantage to the organism. Now we know that this conclusion is an oversimplification. In April 2003, the National Human Genome Research Institute (NHGRI) launched an international research consortium called Encyclopedia of DNA Elements (ENCODE) to uncover non-coding functional elements in the human genome. The result of this project has identified a set of new DNA regulatory elements, based on novel relationships among chromatin accessibility, histone modifications, nucleosome positioning, DNA methylation, transcription, and the occupancy of sequence-specific factors. The project gives us new insights into the organization and regulation of the human genome and epigenome. Here, we sought to summarize particular aspects of the ENCODE project and highlight the features and data that have recently been released. At the end of this review, we have summarized a case study we conducted using the ENCODE epigenome data.