The genetic makeup could be the most important among many factors affecting yield and quality of tobacco(Nicotiana tabacum L.). The mammoth gene found in N. tabacum is associated with greater leaf number and poor leaf quality. This study was carried out to obtain the basic information about the inheritance of mammoth gene and white flower color. Two flue-cured breeding lines, KF 9373-2 and KF 8832-85, F$_1$, F$_2$, two parents backcrossed with F$_1$, and F$_3$ lines derived from cross of above two lines were investigated for flowering type(mammoth gene) and flower color. All plants of F$_1$ population revealed normal flowering type and pink flower color. The progeny of F$_2$ generation was segregated into the phenotypic ratio of 9 : 3 : 3 : 1 with normal flowering type and pink flower color, normal and white, non flowering type(NF) and pink, and NF and white, respectively. Among the progenies of back-crossing populations, the flowering type showed a segregation ratio of 1 : 1 as normal and NF in BP$_1$ and flower color did also 1 : 1 as pink and white in BP$_2$. All lines have the mammoth gene in F$_3$. that were selected in F$_2$ progeny as non flowering. But 9 lines among 14 were segregated with 3 : 1 as pink and white flower in F$_3$. which were selected in F$_2$ as pink flower color. These results indicated that the characters of mammoth gene and white flower were controlled by a pair of recessive genes, respectively.
The objective of this study was to investigate the variation of Chinese milk vetch(Astragalus sinicus L.; CMV) seed quality after flowering. We tagged individual open flowers of CMV at the day of maximum flowering(11 May) in Seoul, Korea. Seed samples were harvested serially at 15, 20, 25 and 30 days after flowering(DAF). To compare with dried seeds, non-dried seeds were tested immediately after harvest and the remaining seeds were placed at room temperature for 4 weeks. Seed length, 1000 seed weight, moisture content, germination rate(GR), mean germination time(MGT), germination speed(GS), germination performance index(GPI) and physical dormancy rate(PDR) were investigated. Seed length increased to 2.6 mm and 1000 seed weight reached up to 2.2 g until 25 DAF. Seed moisture content dramatically decreased from 20 to 25 DAF. Moisture content of non-dried seed(7.5%) was similar to that of dried seed(5.5%) at 25 DAF. The rate of seed viability reached up to 94% at 25 DAF. In case of dried seed, GR increased up to 39% at 25 DAF whereas GR of non-dried seed varied from 5 to 10%. GS and GPI of dried seed were significantly higher than those of non-dried seed since 25 DAF. PDR of dried seed has decreased since 20 DAF, whereas PDR of non-dried seed has increased. GR, GS and GPI increased as PDR decreased. Our results evidenced that PDR might be one of major factor in variation of seed quality, of which development was completed at 25 DAF.
This study was carried out to investigate varietal differences on growth characteristics under the conditions of PE film-mulching and non-mulching in sesame. At maturing stage from 76 to 95 days after sowing, Yangbaeckkae, non-branching plant type, under non-mulching showed larger leaf area index (LAI) than that of film-mulching, while plant height and the number of capsules per plant were similar to those of film-mulching. LAI of Ahnsankkae, branching plant type, under non-mulching was similar to film-mulching, while plant height and the number of capsules per plant were smaller than those of film-mulching. Net assimilation rate (NAR) of two varieties under non-mulching was lower at seedling stage from 25 to 35 days after sowing but higher at flowering stage from 45 to 55 days after sowing. At maturing stage from 66 to 77 days after sowing, NAR and crop growth rate (CGR) of Yangbaeckkae under non-mulching were greater than those of film-mulching, whereas those of Ahnsankkae under non-mulching were lesser than those of film-mulching. Yield under non-mulching was decreased by 7 % in Yangbaeckkae and 33 % in Ahnsankkae compared with that of film-mulching, therefore Yangbaeckkae was more adaptable for non-mulching than Ahnsankkae. Main factors decreasing yield of Yangbaeckkae under non-mulching were small LAI, NAR, and CGR at the stage of young seedling, and small number of capsules at early maturing stage from first flowering to 20 days after first flowering.
This study was conducted to find out the effect of rainfall time on growth and seed quality in safflower. Rainfall was done artificially and the treatment of rainfall time was divided into 6 parts. Each rainfall treatment was done from the first day of flowering up to the fifth day after flowering, from sixth day after flowering to the tenth day after flowering, from the eleventh day after flowering to the fifteenth day after flowering, from sixteenth day after flowering to twentith day after flowering, from the twenty first day after flowering to the twenty fifth day after flowering and from twenty sixth day after flowering to thirtith day after flowering. Rainfall time after flowering did not affect disease occurrence on the upper part and flower bud of safflower, which were infected at were 3.3 and 1, respectively. Ripened grain found on the main stem and primary branch was 37.4% and 65.0% at first day to the fifth day and sixth day to the tenth day rainfall periods after flowering, respectively. Yield was decreased by 14% in the sixth day up to the tenth day and eleventh day up to the fifteenth day rainfall periods (282-281kg/10a) compared to the one under control (327kg/10a). Hunter's L value was 73.5 and 69.9 in twenty first up to the twenty fifth day and twenty sixth up to the thirtith day rainfall periods after flowering, which decreased significantly to 79.3 under non-rainfall period. Therefore, it can be concluded that the optimum harvest time is twenty fifth day after flowering to maintain seed quality at rainfall time and before harvesting period.
This paper describes the potential use of deep sea water to stimulate seed germination in both common and Tartary buckwheat. Treatment of 10% deep sea water at $25^{\circ}C$ would slightly enhance germination of buckwheat seeds compared to non-DSW treatment and other temperature. In this study, the significant effects of photoperiod and temperature on seedling growth were also found in the HL treatment for the number of leaf, plant height, and plant fresh weight and LL treatment for root length and leaf size. Common buckwheat (Suwon No.1) showed higher rate (93%) of flowering plants in the HS and LL (93% of flowering rates) than those revealed in the HS and LS treatment, while the low percentage(67%) of plant flowering plants was shown in the LS treatment. All plants (100%) of a Korean landrace, Ahndong-jaerae showed flowers in the HS and LS treatment. HL and LL treatment status did not occur in the plant's flowering. Any Tartary buckwheat (KW45) plant did not yet flowered when it was 21 days-old.
Proceedings of the Botanical Society of Korea Conference
/
1987.07a
/
pp.213-237
/
1987
In vitro flowering system may minimize the confounded influence of non-floral meristem parts of plants in studying the relationship of a given treatment and flowering responses. We have induced flower buds from plantlets regenerated from zygotic embryo-derived somatic embryos of ginseng, which circumvented the normal 2-year juvenile period before flowering. The result suggests that the adulthood of ginseng root explants in the experiment previously conducted by Chang and Hsing (1980; Nature 284: 341-342) is not prerequired to flowering of plantlets regenerated through somatic embryogenesis. We have also induced flower buds from elongated axillary brandches from cotyledonary nodes by culturing ginseng zygotic embryos, seedlings, and excised cotyledonary nodes. It was found that 6-benzyladenine (BA) supplemented to the medium was essential for flowering, whereas abscisic acid (ABA) was inhibitory. Gibberellic acid(GA3) was also required for flowering when ABA was present with BA in the medium. The results suggest that cytokinins, gibberellins, and inhibitors play primary, permissive, and preventive roles, respective-ly, in the induction of flowering of ginseng. Tran Thanh Van (1980; Int. Rev. Cytol., Suppl. IIA: 175-194) has developed the "thin cell layer system" in which the induction of shoots, roots, or flower buds from epidermal layer explants were controlled by culture conditions and exogenous growth regulators in the medium, Utilizing the thin cell layer system, Meeks-Wagner et al. (1989; The Plant Cell 1: 25-35) have cloned genes specifically expressed during floral evocation. However, the system is too tedious for obtaining a sufficient amount of plant materials for biochmical and molecular biological studies of flowering. We have developed a garlic callus culture system and one obvious advantaging over the thin cell layer system is that an abundant cells committed to develope into flower buds proliferate. When the above cells were compared by two-dimensional gel electrophoresis with those which have just lost the competence for developing into flower buds, a few putative proteins specific to floral evocation were detected. The garlic callus culture system can be further explored for elucidation of the molecular biological mechanism of floral evocation and morphogenesis.hogenesis.
To evaluate growth habits, fresh pod yield potential, and possibility of early and late seeding, seeding dates were extended from March 21 to June 20 by PE mulching and non-mulching. Soil temperature, under 5cm from surface, above 15$^{\circ}C$ at 10 a.m. in early seeding reached about March 25 in mulching and April 5 to April 12 in non-mulching. Days to emergence and first flowering were accelerated owing to increasing temperature, as seeding was delayed. Days to emergence according to seeding dates reduced 21 to 8 day in mulching and 33 to 10 day in non-mulching. Days to flowering were ranged from 51 to 26 day in mulching and from 69 to 32 day in non-mulching and differences between mulching and non-mulching on each seeding date had 18 to 4 days. Early seedings till April 21 had 160-170 flowers per plant for 8 weeks, while late seedings from May 21 increased more speedily with 200 flower for 6 weeks. Harvesting of fresh peanut, at 80 days after first flowering, was possible from Aug. 1 to Oct. 7 (133-108 days to harvest) by mulching and from Aug. 19 to Oct. 12 (151 to 114 days) by non-mulching. Yields between mulching and non-mulching in early seeding until April 21 had more difference, but in late seeding after May 21 was higher and showed insignificance. Pod setting periods by early and late seeding were about 3 weeks equally. In late seeding pod setting were almost concentrated for front 15 days. In spite of difference of fresh pod weight between two seeding times, the distributions of average of seed weight showed nearly same tendency.
The objectives of the study were to investigate the effects of foliage clipping on photosynthesis and grain filling for branch and non branch types under the polyethylene film mulch and non mulch conditions in mono cropping and second cropping after barley in sesame (Sesamum indicum L.), and to improve poor grain filling at later flowering time utilizing these data. One thousand grain weight was more decreased in branch type than in non branch type, in polyethylene film mulch condition than in non mulch condition, and in second cropping after barley than in mono cropping by clipping lower part foliage. Twentyfive percent clipping of lower part foliage showed a little increase than no clipping. Matured grain rate also showed same tendency between branch and non branch type and between mono cropping and second cropping after barley as well as 1,000 grain weight except for polyethylene film mulch. Matured grain rate of 25% foliage clipping at 30 days after flowering in non branch type presented a little increase but decreased in branch type. Clipping of higher part leaves were so serious decrease of matured grain rate that higher part leaves at late maturing time have a major role in photosynthesis. Matured grain rate of foliage clipping at 10 days after flowering was decreased in all treatments. Chlorophyll content of higher part leaves at 50% lower part foliage clipping presented 39% increase compared to same positioned leaves of non treatment, and 66% increase by 50% higher part foliage clipping in lower part leaves. Photosynthetic activity was 58% more increased in 50% lower part foliage clipping than no clipping, but seriously decreased in 50% higher part foliage clipping. Therfore, photosynthates of remained lower part leaves could not only support their own demands, but also any contribution to translocation of photosynthates from source to sink at late maturing time. Harvest index was 28% increased in 25% lower part foliage clipping and 13% decreased in 50% higher part foliage clipping compared to no clipping. Leaf area was 48% increased in 50% lower part foliage clipping compared to the same positioned leaves of no clipping, and only 5% increased in higher part foliage clipping. Productivity by foliage clipping compared to non treatment, was highly decreased in branch type than in non branch type, in second cropping after barley than in mono cropping. Little difference was detected between polyethylene film mulch and non mulch conditions. Twenty five percentage of lower part foliage clipping on mono cropping of non branch type appeared 5% and 8% yield increase in each of polyethylene film mulch and non mulch conditions compared to no clipping, and all decreased in other treatments. Mean loss of productivity by foliage clipping at 10 days after flowering was serious than clipping at 30 days after flowering. As the result, contribution to photosynthesis of source at 10 days after flowering are larger than that at 30 days after flowering in sesame. Fifty percent lower part foliage clipping at 10 days after flowering showed so the most serious yield decrease that lower part leaves at that time were considered as the main role leaves for photosynthesis.
To breed high quality and yield peanut variety according to select the short flowering duration, fifteen germplasms (1 virginia,7 spanish,6 valencia types and var, Daekwang) were investigated the flowering habit and agronomic characteristics from 1998 to 1999. Emergence date of the selected short flowering duration germplasms (SPFGs) was earlier 1-3 days and middle or small seed than that of var, Daekwang. Main stem length was longer 57cm but the number of branches, pods, 100-seed weight, and pod weight per plant was reduced 25%, 23%, 42%, 46%, respectively, in SPFCs comparing to var, Daekwang. The flowering date in SPFGs was similar but the flowering duration was earlier 5-16 days than that of var, Daekwang (52 days). Varieties that flowered shorter duration than 50 days were 18.8% among the SPFGs. The number of total flowers in SPFGs was fewer 50% than that of var, Daekwang. The rate of flowering inhibition were 50-52% than that of var Daekwang. The frequencies of flowering duration (under 50 days) were 7.7% in virginia, 46.2% in spanish, 53.9% in valencia. The effect of shading treatment on rate of flowering inhibition were 11%, but number of branches and pods were reduced by 27-31% in valencia type compared to non-shade. Correlation coefficient was significant positively ($r=0.9314^*$ virginia, $r=0.9551^*$ spanish, $r=0.9551^*$ valencia) between the air temperature and flower number, The frequency of peg and pod number on 1st to 2nd nodes in SPFGs were more 3-12%, 21-26% than that of var. Daekwang. The rate of mature pods at 80 days after flowering were higher 12-17% than that of var, Daekwang (68%). Correlation coefficient was high significant negatively between date of first flower and flowering date, the ratio of mature pod.
Nam, Jin Soo;Park, In Sook;Shim, Sung Im;Ryu, Jung A;Lim, Ki Byung
FLOWER RESEARCH JOURNAL
/
v.18
no.2
/
pp.87-92
/
2010
This research was aimed to extend the vase life, improve the cut flower quality and promote flowering rate of bulbous cut Iris 'Blue Magic'. Three different concentrations of 1-MCP ranging from 250 to $750nL{\cdot}L^{-1}$ were treated on cut Iris flowers for the vase life elongation. Several effects of 1-MCP treatment has shown such as early flowering as one day but vase life showed no significant differences comparing to the untreated control. Flowering rate was 75% or more in the treated ones as compare to 64.2% in untreated control. Especially, in a treatment with $250nL{\cdot}L^{-1}$ 1-MCP for 12 hours it showed all flowering. In many post-harvest experiments of cut flowers, ethylene production from flower organ has considered as most critical factor on vase life. Ethylene production from flower organ was measured by gas chromatography (GC) and it showed that there is no direct relation between flower longevity and emission of the ethylene gas in cut Iris. In comparison with the untreated control, ethylene generation rather seems to be increased as 1-MCP treatment increased. There was a synergy effect when 1-MCP and BA applied simultaneously in which flowering and vase life were fastened and also extended, respectively. Therefore, treatment of 1-MCP for cut Iris at flower early harvest is able to improve the flower quality both by diminishing non-flowering rate and by extended flower longevity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.