• Title/Summary/Keyword: non-dimensional curve

Search Result 94, Processing Time 0.019 seconds

The crystallization behavior of glass made from coal bottom ash (석탄 바닥재로 제조된 유리의 결정화 거동 분석)

  • Jang, Seok-Joo;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • The glass-ceramics made from the mixture of coal bottom ash, produced from a thermal power plant mixed with $Na_2O$ and $Li_2O$ was fabricated and their crystallization behavior was studied using a non-isothermal analyzing method. The temperature for 50% crystallization was higher than the exothermic peak temperature $T_p$ at DTA curve and the quickest crystallization temperature was much the same as $T_p$ as identified from the relationships of crystallized fraction and crystallization rate with temperature. By using Kissinger equation describing a crystallization behavior, the activation energy (262 kJ/mol), the Avrami constant (1.7) and the frequency ($5.7{\times}10^{16}/s$) for crystallization were calculated from which the nepheline crystal could be expected as showing an 1~2-dimensional surface crystallization behavior mainly with some bulk crystallization tendency at the same time. The actual observation of microstructure using SEM showed the considerable amount of surface crystals of dendrite and the bulk crystals with low fraction, so the prediction by the Kissinger equation was in accord with the crystallization behavior of glass-ceramics fabricated in this study.

A Study on the Stability of Uncontinuous Plate Structures with Cracks (결함을 갖는 불연속평판 구조물의 안정성 연구)

  • Lee, Seon-U;Kim, Si-Yeong;Hong, Bong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 1984
  • This paper deals with the characterics of the stability of uncontinuous plate structures with cracks. The relation between the J-intergal of the cracks existing in the stress-concentrated regions and local strain are investigated experimentally and theoretically. The BEM(boundary element method)analysis and test results lead to the follow conclusions: 1. A non-dimensional J was computed in a plate stress and strain condition for several kind of loads and crack types. The J design curves are defined as follows: J sub(E)/$\sigma$ sub(y) super(2) a=3.345(e/e sub(y) ) super(2) at e/e sub(y)$\leq$1 J sub(E)/$\sigma$ sub(y) super(2) a=3.345(e/e sub(y) ) at e/e sub(y)$\geq$1 2. Use of this curve provides a good estimation for the uncontinuous plate structures with cracks existing in the stress and strain concentrated region. 3. The stability of the characteristics is mainly depenent upon not the length of cracks but the type of the cracks.

  • PDF

Imaging Assessment of Visceral Pleural Surface Invasion by Lung Cancer: Comparison of CT and Contrast-Enhanced Radial T1-Weighted Gradient Echo 3-Tesla MRI

  • Yu Zhang;Woocheol Kwon;Ho Yun Lee;Sung Min Ko;Sang-Ha Kim;Won-Yeon Lee;Suk Joong Yong;Soon-Hee Jung;Chun Sung Byun;JunHyeok Lee;Honglei Yang;Junhee Han;Jeanne B. Ackman
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.829-839
    • /
    • 2021
  • Objective: To compare the diagnostic performance of contrast-enhanced radial T1-weighted gradient-echo 3-tesla (3T) magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of visceral pleural surface invasion (VPSI). Visceral pleural invasion by non-small-cell lung cancer (NSCLC) can be classified into two types: PL1 (without VPSI), invasion of the elastic layer of the visceral pleura without reaching the visceral pleural surface, and PL2 (with VPSI), full invasion of the visceral pleura. Materials and Methods: Thirty-three patients with pathologically confirmed VPSI by NSCLC were retrospectively reviewed. Multidetector CT and contrast-enhanced 3T MRI with a free-breathing radial three-dimensional fat-suppressed volumetric interpolated breath-hold examination (VIBE) pulse sequence were compared in terms of the length of contact, angle of mass margin, and arch distance-to-maximum tumor diameter ratio. Supplemental evaluation of the tumor-pleura interface (smooth versus irregular) could only be performed with MRI (not discernible on CT). Results: At the tumor-pleura interface, radial VIBE MRI revealed a smooth margin in 20 of 21 patients without VPSI and an irregular margin in 10 of 12 patients with VPSI, yielding an accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F-score for VPSI detection of 91%, 83%, 95%, 91%, 91%, and 87%, respectively. The McNemar test and receiver operating characteristics curve analysis revealed no significant differences between the diagnostic accuracies of CT and MRI for evaluating the contact length, angle of mass margin, or arch distance-to-maximum tumor diameter ratio as predictors of VPSI. Conclusion: The diagnostic performance of contrast-enhanced radial T1-weighted gradient-echo 3T MRI and CT were equal in terms of the contact length, angle of mass margin, and arch distance-to-maximum tumor diameter ratio. The advantage of MRI is its clear depiction of the tumor-pleura interface margin, facilitating VPSI detection.

A Study of Anomaly Detection for ICT Infrastructure using Conditional Multimodal Autoencoder (ICT 인프라 이상탐지를 위한 조건부 멀티모달 오토인코더에 관한 연구)

  • Shin, Byungjin;Lee, Jonghoon;Han, Sangjin;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Maintenance and prevention of failure through anomaly detection of ICT infrastructure is becoming important. System monitoring data is multidimensional time series data. When we deal with multidimensional time series data, we have difficulty in considering both characteristics of multidimensional data and characteristics of time series data. When dealing with multidimensional data, correlation between variables should be considered. Existing methods such as probability and linear base, distance base, etc. are degraded due to limitations called the curse of dimensions. In addition, time series data is preprocessed by applying sliding window technique and time series decomposition for self-correlation analysis. These techniques are the cause of increasing the dimension of data, so it is necessary to supplement them. The anomaly detection field is an old research field, and statistical methods and regression analysis were used in the early days. Currently, there are active studies to apply machine learning and artificial neural network technology to this field. Statistically based methods are difficult to apply when data is non-homogeneous, and do not detect local outliers well. The regression analysis method compares the predictive value and the actual value after learning the regression formula based on the parametric statistics and it detects abnormality. Anomaly detection using regression analysis has the disadvantage that the performance is lowered when the model is not solid and the noise or outliers of the data are included. There is a restriction that learning data with noise or outliers should be used. The autoencoder using artificial neural networks is learned to output as similar as possible to input data. It has many advantages compared to existing probability and linear model, cluster analysis, and map learning. It can be applied to data that does not satisfy probability distribution or linear assumption. In addition, it is possible to learn non-mapping without label data for teaching. However, there is a limitation of local outlier identification of multidimensional data in anomaly detection, and there is a problem that the dimension of data is greatly increased due to the characteristics of time series data. In this study, we propose a CMAE (Conditional Multimodal Autoencoder) that enhances the performance of anomaly detection by considering local outliers and time series characteristics. First, we applied Multimodal Autoencoder (MAE) to improve the limitations of local outlier identification of multidimensional data. Multimodals are commonly used to learn different types of inputs, such as voice and image. The different modal shares the bottleneck effect of Autoencoder and it learns correlation. In addition, CAE (Conditional Autoencoder) was used to learn the characteristics of time series data effectively without increasing the dimension of data. In general, conditional input mainly uses category variables, but in this study, time was used as a condition to learn periodicity. The CMAE model proposed in this paper was verified by comparing with the Unimodal Autoencoder (UAE) and Multi-modal Autoencoder (MAE). The restoration performance of Autoencoder for 41 variables was confirmed in the proposed model and the comparison model. The restoration performance is different by variables, and the restoration is normally well operated because the loss value is small for Memory, Disk, and Network modals in all three Autoencoder models. The process modal did not show a significant difference in all three models, and the CPU modal showed excellent performance in CMAE. ROC curve was prepared for the evaluation of anomaly detection performance in the proposed model and the comparison model, and AUC, accuracy, precision, recall, and F1-score were compared. In all indicators, the performance was shown in the order of CMAE, MAE, and AE. Especially, the reproduction rate was 0.9828 for CMAE, which can be confirmed to detect almost most of the abnormalities. The accuracy of the model was also improved and 87.12%, and the F1-score was 0.8883, which is considered to be suitable for anomaly detection. In practical aspect, the proposed model has an additional advantage in addition to performance improvement. The use of techniques such as time series decomposition and sliding windows has the disadvantage of managing unnecessary procedures; and their dimensional increase can cause a decrease in the computational speed in inference.The proposed model has characteristics that are easy to apply to practical tasks such as inference speed and model management.