• Title/Summary/Keyword: non-destructive testing

Search Result 534, Processing Time 0.034 seconds

Eddy Current Testing(I) (와전류탐상범(渦電流探傷法)(I))

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.2
    • /
    • pp.94-100
    • /
    • 1993
  • 이번 호부터 해설란을 통하여 비파괴검사(非破壞檢査) 기술(技術)에 대한 연재를 시작한다. 앞으로 비파괴검사(非破壞檢査) 기술(技術) 각 분야에 대해 다룰 예정이며 우선 1차적으로 와전류탐상법(渦電流探傷法)에 관해 3회에 걸쳐 게재하기로 한다. 특정한 비파괴검사(非破壞檢査)의 전문가가 아니더라도 쉽게 이해할 수 있도록 가급적 수식은 배제하고 기초적인 이론을 소개할 것이며 특히 현장 적용에 중점을 두어 기술(記述)하고자 한다. 본 원고에서는 원거리 와전류탐상법(渦電流探傷法)(remote field eddy current testing) 이나 펄스 와전류탐상법(渦電流探傷法)(pulsed eddy current testing)과 같은 특수 와전류(渦電流) 기술(技術)은 제외하였으며 본 연구실에서 내부 교육용으로 사용하는 "와전류탐상법(渦電流探傷法) Level I 과정"과 미국금속학회에서 발행한 Metal Handbook, 9th ed., Vol. 17, "Non-destructive Evaluation and Quality Control" 및 기타 관련 기술 자료들을 참고하였으나 일일이 명기하지는 않는다.

  • PDF

Development of Magnetic Phase Detection Sensor for the Steam Generator Tube in Nuclear Power Plants

  • Son, De-Rac;Joung, Won-Ik;Park, Duck-Gun;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.97-100
    • /
    • 2009
  • A new eddy current testing probe was developed to separate the eddy current signal distortion caused by permeability variation clusters and ordinary defects created in steam generator tubes. Signal processing circuits were inserted into the probe to increase the signal-to-noise ratio and allow digital signal transmission. The new probe could measure and separate the magnetic phases created in the steam generator tubes in the operating environment of a nuclear power plant. Furthermore, the new eddy current testing probe can measure the defects in steam generator tubes as rapidly as a bobbin probe with enhanced testing speed and reliability of defect detection.

Trends in Broadband Terahertz Detector Technology (광대역 테라헤르츠 검출 소자 기술 동향)

  • Shin, J.H.;Choi, D.H.;Lee, E.S.;Moon, K.W.;Park, D.W.;Joo, K.I.;Kim, M.G.;Choi, K.S.;Lee, I.M.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.53-64
    • /
    • 2020
  • The terahertz (THz) region lies in between the millimeter and infrared spectral bands. A THz wave has the characteristics of non-invasiveness and non-ionization due to low photon energies, while having high penetrability in dielectrics. In addition, since the resonance frequencies of various molecules are included in the THz band, research on the application of spectral analysis and non-destructive testing has been widely studied. Towards this end, the research and development of THz detectors has become increasingly important in order to assess their applications in different areas such as astronomy, security, industrial non-destructive evaluations, biological applications, and wireless communications. In this report, we summarize the operating principles, characteristics, and utilization of various broadband technologies in THz detection devices. Further, we introduce the development status of our Schottky barrier diode technology as one of the broadband THz detectors that can be easily adopted as direct detectors in many fields of applications.

A Study on the Discrimination of Materials Corrosion States Using the Acoustic Signal Data (음향신호 데이터를 이용한 재료 부식 상태 판별에 관한 연구)

  • Moon, Gun
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.2
    • /
    • pp.131-139
    • /
    • 2005
  • On this study, I constructed the reflective acoustic signal detecting system using 15MHz acoustic transducer. The most difficult problems discriminating the characteristics of the metal substance are the discriminating the corrosion state and seeking hidden defects by using none destructive testing. For solving these problems, at first, theoretic analysis has been proceeded on the acoustic V(z) characteristics which is very important on discriminating the material characteristics. For application the V(z) theory to discriminating corrosion state, the 100 and 500 won metal coins which are issued on the different years are used as the test samples. The experimental results showed the distinct differences among the coin's acoustic signals accorded to its issued years. I catched the common regulation by analysing the acquisited acoustic signals and convinced this technique to be very useful on corrosion discrimination of the metal substances by none destructive testing and also can be used to inspect on the aeronautical materials for safety navigation.

  • PDF

Testing of Mechanical Properties on Dissimilar Metal Friction Welds (異性材料 마찰용접부의 기계적 성질검사)

  • 나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 1984
  • Increase of the requirements on quality of welded structures necessitates the improvement of known inspection methods and the introduction of progressive new techniques. Non-destructive methods are the most advanced, but there are considerable difficulties in using the methods of radiography with electromagnetic rays and ultrasonic testing in the inspection of dissimilar metal friction welds, because their physical and mechanical properties are changed very rapidly at the interface. The values of simple mechanical test for dissimilar metal friction welds have always been dubious, as the strength of the bond is often greater than that of the softer materials being jointed. Thus, in this paper some conventional mechanical testing methods are examined in an attempt to determine a technique for dissimilar metal friction welds, which will give a reliable quantitative indication of the weld quality. From the considered static and dynamic testing methods the impact bending test on unnotched and notched specimens are the most sensitive to find out the small joining defects in the interface.

Development of Calibration System for Contact Transducer (초음파 탐촉자의 교정 시스템 개발)

  • Nam, Y.H.;Seong, U.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.294-299
    • /
    • 1999
  • In this paper, the calibration system for contact transducer has been developed to improve the reliability of the inspection result of ultrasonic testing on rotors. This system consists of signal processing parts: (oscilloscope, spectrum analyzer, pulser/receiver), standard block, and user interface program. Signal processing for the calibration system was performed quickly with high accuracy. The developed system has been applied to a practical calibration of probe using the non-destructive testing on rotors, and demonstrated high sensitivity and precision.

  • PDF

Performance of Different Sensors for Monitoring of the Vibration Generated during Thermosonic Non-destructive Testing

  • Kang, Bu-Byoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Vibration monitoring is required for reliable thermosonic testing to decide whether sufficient vibration is achieved in each test for the detection of cracks. From a practical point of view, a cheaper and convenient monitoring method is better for the application to real tests. Therefore, the performance of different sensors for vibration monitoring was investigated and compared in this study to find a convenient and acceptable measurement method for thermosonics. Velocity measured by a laser vibrometer and strain provide an equivalent HI when measured at the same position. The microphone can provide a cheaper vibration monitoring device than the laser and the heating index calculated by a microphone signal shows similar characteristics to that calculated from velocity measured by the laser vibrometer. The microphone frequency response shows that it underestimates high frequency components but it is applicable to practical tests because it gives a conservative value of HI.

Estimation of Modal Parameters for Plastic Film-Covered Greenhouse Arches (비닐하우스 아치구조의 모달계수 산정)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • To a series of vibration records obtained from experimental modal testing using a fixed hammer and roving accelerometers for greenhouse arch structures, modal parameters such as natural frequencies, damping ratios and mode shapes are extracted by applying the two most advanced system identification methods in the frequency-domain up to now, so-called PolyMAX and FDD. The former involves both input and output data, while the latter utilizes only the output data. The possibility of determining the static buckling load, detecting damages, etc., for very slender steel-pipe arches by means of a non-destructive testing method based on vibration measurements is primarily investigated. The extracted modal parameters generally correlated well with those obtained using finite element analysis, demonstrating promising results for further on-going research.

Numerical Analysis of Magnetic Flux Leakage Inspection (누설자속탐상의 수치해석)

  • Lee, Hyang-Beom;Kim, Sean
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.485-492
    • /
    • 2001
  • In this paper, electro-magnetic numerical analysis of MFL(magnetic flux leakage) method is presented. For the electromagnetic numerical analysis, 2-D FEM(finite element method) is used. The magnetic vector potential is used as a variable. The analysis of the magnetic field considering the magnetic nonlinearity is performed for the effect of the magnetic salutation. For the verification of the validity of the numerical simulation results, by using the lab-made experimental setup, non-destructive inspection is performed. The SM 45C carbon steel is used as a specimen and the artificial defects are made on the specimen. The non-destructive testing for the detection of the defect is performed. The results according to the variation oi the defect depth and the defect shape are obtained. The experimental results are compared to the numerical ones, and we conclude that the numerical results are similar to the experimental ones. So the possibility of simulation of the MFL by using the numerical analysis is shown in this paper.

  • PDF

Predicting the Firmness of Apples using a Non-contact Ultrasonic Technique

  • Lee, Sangdae;Park, Jeong-Gil;Jeong, Hyun-Mo;Kim, Ki-Bok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.192-198
    • /
    • 2013
  • Purpose: Methods for non-destructive estimation of product quality have been reported in various industrial fields, but the application of ultrasonic techniques for the agricultural products of potatoes, pears, apples, watermelons, kiwis and tomatoes etc. have been rarely reported since the application of a contact-type ultrasonic transducer in agricultural products is very difficult. Therefore, this study sought to determine the firmness of apples using non-contact ultrasonic techniques. Methods: For this experiment, an ultrasonic experimental tester using a non-contact ultrasonic transducer was created, and a signal processing program was used to analyze the acquired ultrasonic reflected signal. Also, a universal testing machine was used to measure firmness parameters of the apples such as bioyield strength, a firmness factor, after the ultrasonic tests had been performed. Results: Six distance correction factors were calculated to obtain consistent values of ultrasonic properties regardless of the distance between the transducer and the surface of the subject. We developed prediction models of the bioyield strength using the distance correction factors. Conclusions: The optimum prediction model of the bioyield strength of apples using a non-contact ultrasonic technique was a multiple regression model ($R^2=0.9402$).