• Title/Summary/Keyword: non-destructive test and evaluation

Search Result 154, Processing Time 0.025 seconds

Soundness evaluation of friction stir welded A2024 alloy by non-destructive test (비파괴검사에 의한 A2024 마찰교반용접부의 건전성 평가)

  • Ko, Young-Bong;Kim, Gi-Beom;Park, Kyeung-Chae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.135-143
    • /
    • 2013
  • Friction Stir Welding (FSW) was developed, it is successfully commercialized in the field of transportation vehicles. In this study, we analyzed the defects of A2024-T4 alloy using non-destructive test of radiograph, ultrasonic, electrical conductivity and destructive test of microstructure observation, tensile strength. As the results of experiment, mapping of defects was obtained. Fine defects which were not detected in radiograph test were detected in ultrasonic test, and it enabled efficient detection of defects by difference of sound pressure and color. The values of electrical conductivity was decreased as amount of defects was increasing. Joint efficient of defect-free weldment that found by non-destructive and destructive test was 91%. Therefore it was considered that non-destructive test of friction stir welded A2024-T4 Alloy was an efficient method.

Evaluation of Stress-Strain Characteristics of Weldment in Natural Gas Pipeline Using Advanced Indentation System (Advanced Indentation System을 이용한 천연가스배관 용접열영향부의 응력-변형률 변화 특성 분석)

  • Jang, Jae-Il;Son, Dong-Il;Kwon, Dong-Il;Kim, Woo-Sik;Park, Joo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.483-488
    • /
    • 2001
  • Until now, the tensile properties of materials can be obtained just in accordance with conventional tensile testing methods which are described in several standards such as ASTM (American Society for Testing and Materials) standard and BS (British Standard). For some cases including on-service facility materials, however, the standard testing methods cannot be applicable due to the destructive testing procedure and specimen size requirement. Therefore, simple, non-destructive and advanced indentation technique was proposed. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. In this paper, the research trend of non-destructive evaluation of tensile properties using AIS (advanced indentation system) and its application fields are reviewed and discussed.

  • PDF

An Evaluation of the Compressive Strength of Recycled Aggregate Concrete by the Non-Destructive Testing (비파괴 시험에 의한 재생골재 콘크리트의 압축강도 평가)

  • Chung, Heon-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.63-70
    • /
    • 2004
  • The objective of this study is to evaluate the compressive strength of recycled aggregate concrete by the non-destructive testing. Main experimental variables were the replacement level of recycled aggregate and blast-furnace slag, which were divided into two series according to recycled aggregate maximum size. Test results showed that a recycled aggregate had a significant influence on the non-destructive testing results, such as rebound number, Ultrasonic pulse velocity, and frequency. A prediction model of compressive strength considering the replacement level of recycled aggregate was suggested by multi-regression analysis and was compared with test results.

A Development on the Non-Destructive Testing Equipment for the Compaction Control and the Evaluation of Pavements Properties (지반물성추정 및 다짐관리를 위한 비파괴시험장비의 개발)

  • 최준성;김인수;유지형;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.385-390
    • /
    • 2000
  • In this study, the Non-Destructive Testing Equipment was introduced for the compaction control and the evaluation of pavements properties and the developing process was showed. Falling Weight Deflectometer(FWD) is a system for performing non-destructive testing of pavement and the other foundation structures. The system develops forces from the acceleration caused by the arrest of a falling weight and these forces are transmitted onto the surface of a structure causing it to deflect much as it would due to the weight of a passing wheel load. The structure will bend downward and exhibit a deflection basin. FWD uses a set of velocity sensors to determine the amplitude and shape of the deflection basin. The deflection response, when related to the applied loading, can provide information about the strength and condition of the various elements of the test structure. In this study, a computer program was developed that can be used to evaluate pavement and foundation structures from the data produced by FWD. The Falling Weight Deflectometer, non-destructive testing equipment, is increasing used at the whole world.

  • PDF

Evaluation on Soundness of Cast-In-Place Gutter Concrete Under Freezing-Thawing and Chloride Attack (염해 및 동결융해 작용을 받은 현장타설 측구 콘크리트의 건전도 평가)

  • Lee, Tae-Gyu;Kim, Gyu-Yong;Kang, Yeon-Woo;Kim, Soon-Mook;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.78-79
    • /
    • 2015
  • For estimating compressive strength of concrete, non-destructive test has conducted generally. It used experimental equation to calculate compressive strength from construction. This study investigated experiment to apply non-destructive test, based on fresh property, compressive strength and ultrasonic pulse velocity of high performance concrete. And it conducted to compare various proposed equation.

  • PDF

Evaluation of Non-destructive Test Results for Existing Concrete Bridges in Korea (노후화된 국내 콘크리트 교량에 적합한 비파괴 시험 결과의 평가)

  • 이학은;윤영수;백영인;이병철;김영민;정우용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.385-390
    • /
    • 1998
  • Non-destructive field tests of the concrete has achieved increasing acceptance for the evaluation of existing concrete structures. As two major testing methods, this paper recommends the proper empirical relationship between the rebound number together with the ultrasonic pulse velocity and the core strength to fit the old concrete bridges in Korea.

  • PDF

A Study on the Application of Non-destructive Test for Concrete Bridges in Korea (국내 콘크리트 교량에 적합한 비파괴 시험법 적용에 관한 연구)

  • 이학은;윤영수;이병철;김영민;정우용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.737-742
    • /
    • 1998
  • Non-destructive field tests of the concrete has achieved increasing acceptance for the evaluation of existing concrete structures. But the application of this test has not still accomplished to guarantee perfectly the durability of the concrete bridges in Korea. As two major testing methods, this paper recommends the proper empirical relationship between the rebound number together with the ultrasonic pulse velocity and the core strength. Also, this paper recommend the relationships as the aging and as the element.

  • PDF

Evaluation Technique of Concrete Strength Using Impact-Resonance and Combined Method (충격공진법 및 복합법을 이용한 콘크리트의 강도 평가 기법)

  • 이광명;이회근;김동수;김지상
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.157-167
    • /
    • 1999
  • Among several non-destructive testing methods, ultrasonic pulse velocity method and rebound index method have been widely used for the evaluation of concrete strength. However, such methods might not provide accurate estimated results since factors influencing the relationship between strength and either ultrasonic pulse velocity or rebound index are not considered. In this paper, the evaluation method of concrete strength using rod-wave velocity measured by impact-resonance method is proposed. A basic equation is obtained by the linear regression of velocity vs, strength data at specific age and then, aging factor is employed in the equation to consider the difference of the increasing rate between wave velocity and strength. Strengths predicted by the proposed equation agree well with test results. Furthermore, the combined method of rod-wave velocity and rebound index is proposed.

Non-destructive Testing Methods to Evaluate the Effectiveness of Crack Repair Using Expoxy and Microcement (균열 주입부의 비파괴 검사에 의한 주입효과 판정에 관한 연구)

  • 최홍식;이시우;이호범;송영철;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.841-846
    • /
    • 2002
  • Development on non-destructive testing methods were performed to evaluate the effectiveness of crack repair for test beams induced a crack. Cracked beams are repaired with expoxy and microcement, and then they are tested by two methods, the ultrasonic pulse velocity method and the transfer function method. It is proved that the ultrasonic pulse velocity method is very valid for the evaluation of the effectiveness on expoxy repair, and the transfer function method is very applicable to evaluate the effectiveness on microcement repair.

  • PDF

Behavior Properties of Bridge by Non Destructive and Loading Test (비파괴 및 재하시험에 의한 노후 교량의 거동특성)

  • Min, Jeong-Ki;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.