• Title/Summary/Keyword: non-destructive techniques

Search Result 223, Processing Time 0.026 seconds

Experimental modal analysis of railway concrete sleepers with cracks

  • Real, J.I.;Sanchez, M.E.;Real, T.;Sanchez, F.J.;Zamorano, C.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Concrete sleepers are essential components of the conventional railway. As support elements, sleepers are always subjective to a variety of time-dependent loads attributable to the train operations, either wheel or rail abnormalities. It has been observed that the sleepers may deteriorate due to these loads, inducing the formation of hairline cracks. There are two areas along the sleepers that are more prone to crack: the central and the rail seat sections. Several non-destructive methods have been developed to identify failures in structures. Health monitoring techniques are based on vibration responses measurements, which help engineers to identify the vibration-based damage or remotely monitor the sleeper health. In the present paper, the dynamic effects of the cracks in the vibration signatures of the railway pre-stressed concrete sleepers are investigated. The experimental modal analysis has been used to evaluate the modal bending changes in the vibration characteristics of the sleepers, differentiating between the central and the rail seat locations of the cracks. Modal parameters changes of the 'healthy' and cracked sleepers have been highlighted in terms of natural frequencies and modal damping. The paper concludes with a discussion of the most suitable failure indicator and it defines the vibration signatures of intact, central cracked and rail seat cracked sleepers.

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

Field Application of a Cable NDT System for Cable-Stayed Bridge Using MFL Sensors Integrated Climbing Robot (누설자속센서를 탑재시킨 이동로봇을 이용한 사장교 케이블 비파괴검사 시스템의 현장 적용)

  • Kim, Ju-Won;Choi, Jun-Sung;Lee, Eun-Chan;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 2014
  • In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

A study on a silicon surface modification by $CHF_3/C_2F_6$ reactive ion etching ($CHF_3/C_2F_6$ 반응성이온 건식식각에 의한 실리콘 표면의 변형에 관한 연구)

  • Park, Hyeong-Ho;Gwon, Gwang-Ho;Gwak, Byeong-Hwa;Lee, Su-Min;Gwon, O-Jun;Kim, Bo-U;Seong, Yeong-Gwon
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.214-220
    • /
    • 1991
  • The effects of $SiO_2$ reactive ion etching (RIE) in $CHF_{3/}C_2F_6$ on the surface properties of the underlying Si substrate were studied by X-ray photoelectron spectroscopy(XPS) and secondary ion mass spectrometry(SIMS) techniques. Angle-resolved XPS analysis was carried out as non-destructive depth profile one for investigating the chemical bonding states of silicion, carbon, oxygen and fluorine. The residue layer consists of C-F polymer. O-F bond was found on the top of the polymer layer and Si-O, Si-C and Si-F bonds were detected between Si substrate and polymer film. A 60nm thick damaged layer of silicon surface mainly contains carbon and fluorine.

  • PDF

Study on Cracking Causes and Patterns in Median Barrier and Guardrail Concrete in RC Bridge (콘크리트 교량 방호벽의 균열원인 및 패턴 분석에 대한 연구)

  • Choi, Se-Jin;Choi, Jung-Wook;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • Concrete guide rail and median barrier are an attached RC member, however they are vulnerable to cracking due to slip form construction and large surface of member. In this study, causes and pattern of cracking are analyzed through assessment and NDT (Non-Destructive Technique) evaluation for concrete guide rail and median barrier on highway structure. For this work, analysis on drying shrinkage and hydration heat are performed considering installation period, and plastic shrinkage is also analyzed considering their environmental conditions. From the evaluation, plastic settlement around steel location, drying/ plastic shrinkage, and aggregate segregation are inferred to be the main causes of cracking in the structures. The crack causes and patterns are schematized and techniques of crack-control are suggested. Furthermore concrete guide rail/ median barrier in the bridge on the sea are vulnerable to cracking at early age so that special attentions should be paid at the stages of material selection and construction.

Review of the Current infrared Thermorgraphy Techniques for Detecting Defects in Civil Structures (토목 구조물의 손상 검출을 위한 적외선 열화상 기법의 적용 사례 분석)

  • Sim, Jungi;Zi, Goangseup;Park, Jin-Hyung;Cho, Hyo-Nam;Lee, Jong Seh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.71-83
    • /
    • 2008
  • In this paper, the basic principle, the application and the limitation of Infrared thermography technique to detect defects in different kinds of concrete structures are reviewed. Considered are voids beneath the concrete surface with experiments, delamination between concrete surface and fiber reinforced polymer sheet, the deterioration of steel bars in reinforced concrete, surface defects in historical buildings, pavements, bridges, and railway track graves. As a result, we conclude that infrared thermography methods are useful for fast detecting defects; however, they are influenced by environmental factors, specially temperature. Therefore it is recommended to use the infrared thermography technique with other NDT equipments to expect better result.

STUDIES ON THE CHARACTERISTICS OF STONE STRUCTURES BY GEOTECHNICAL AND DYNAMIC STRUCTURAL ENGINEERINGS (석조구조물의 효율적 유지관리를 위한 지질공학적 및 구조동역학적 특성연구)

  • HoWoongShon;SungMinLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.277-294
    • /
    • 2003
  • Structures show the phenomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural property, Chum-Sung-Dae, located in Kyeongjucity, Korea. It was built about 1,300 years ago, and has undergone deformation and ground-subsidence with time-lapse. Non-destructive evaluation techniques were applied to the Chum-Sung-Dae, to protect it from survey. Because of this reason, 3D precise laser scanning surveying system was applied to measure the exact size of Chum-Sung-Dae, displacement and declining angles. Geophysical exploration also was applied to study the subsurface distribution of geotechnical parameters or physical properties. Natural frequencies were measured from real and model of Chum-Sung-Dae to study the dynamic characteristics of vibration and/or earthquake load and stiffness of structures.

  • PDF

Elastic Wave Field Calculations (탄성파의 변형 및 응력 계산에 관한 연구)

  • 이정기
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Calculation of elastic wave fields has important applications in a variety of engineering fields including NDE (Non-destructive evaluation). Scattering problems have been investigated by numerous authors with different solution schemes. For simple geometries of the scatterers (e.g., cylinders or spheres), the analysis of steady-state elastic wave scattering has been carried out using analytical techniques. For arbitrary geometries and multiple inclusions, numerical methods have been developed. Special finite element methods, e.g., the infinite element method and a hybrid method called the Global-Local finite element method have also been developed for this purpose. Recently, the boundary integral equation method has been used successfully to solve scattering problems. In this paper, a volume integral equation method (VIEM) is proposed as a new numerical solution scheme for the solution of general elasto-dynamic problems in unbounded solids containing multiple inclusions and voids or cracks. A boundary integral equation method (BIEM) is also presented for elastic wave scattering problems. The relative advantage of the volume and boundary integral equation methods for solving scattering problems is discussed.

  • PDF

Analysis on deterioration behaviors of the beewax-treated Annals of Joseon Dynasty (「조선왕조실록」 밀납본의 열화특성 분석)

  • Jo, Byoung-muk;Kim, Hyoung-jin;Choi, Tae-ho;Eom, Tae-jin
    • 보존과학연구
    • /
    • s.28
    • /
    • pp.21-37
    • /
    • 2007
  • Paper cultural asset show various deterioration characteristics and behaviors according to the environmental conditions during the storage. The understanding of the paper itself and its conservation knowledge is thus prerequisite to preserve paper cultural assets and pass them to descendants in a good condition. The Annals of Joseon Dynasty is one of the most important our written cultural assets (National treasure No.151) and it is registered as a UNESCO Memory of the World. The Annals of Joseon Dynasty is composed of 1707 volumes and 1,187 books that were written on the official history of 472 years(AD 1392-1863) from King Taejo to King Chuljong (25 generations). Among them, beewax-treated Annals show severe damages due to the deterioration of wax materials such as breaking, hardening, darkening, discoloring and whitening. Urgent measures should be taken to preserve the Annals and prevent further deterioration. Therefore, a systematic and scientific approach on the conservation and restoration of the Annals of Joseon Dynasty is definitely necessary. So it can be used an example to show how much the preservation science can conserve the paper cultural assets. In this respect, this study focuses on analyzing paper properties and deterioration behaviors of the Annals of King Sejong, the most damaged one, using non-destructive micro analysis techniques.

  • PDF

Quantification of 3D Pore Structure in Glass Bead Using Micro X-ray CT (Micro X-ray CT를 이용한 글라스 비드의 3차원 간극 구조 정량화)

  • Jung, Yeon-Jong;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.83-92
    • /
    • 2011
  • The random and heterogeneous pore structure is a significant factor that dominates physical and mechanical behaviors of soils such as fluid flow and geomechanical responses driven by loading. The characterization method using non-destructive testing such as micro X-ray CT technique which has a high resolution with micrometer unit allows to observe internal structure of soils. However, the application has been limited to qualitatively observe 2D and 3D CT images and to obtain the void ratio at macro-scale although the CT images contain enormous information of materials of interests. In this study, we constructed the 3D particle and pore structures based on sequentially taken 2D images of glass beads and quantitatively defined complex pore structure with void cell and void channel. This approach was enabled by implementing image processing techniques that include coordinate transformation, binarization, Delaunay Triangulation, and Euclidean Distance Transform. It was confirmed that the suggested algorithm allows to quantitatively evaluate the distribution of void cells and their connectivity of heterogeneous pore structures for glass beads.